CLC5801 High Speed Low Noise Voltage Feedback Amplifier

Literature Number: SNOS514

May 2000

CLC5801 High Speed Low Noise Voltage Feedback Amplifier

General Description

The CLC5801 is a low-cost, wideband voltage feedback amplifier excellent for low noise applications. It combines a wide <u>bandwidth of 420MHz</u> with very low noise

 $(2nV\sqrt{Hz}$, $1.8pA\sqrt{Hz}$) and low DC errors (100µV $V_{OS})$ making it an excellent precision high speed op amp offering closed-loop gains of \geq 10.

The CLC5801 employs a traditional voltage-feedback topology and provides all the benefits of balanced inputs, such as low offsets and drifts, as well as 96dB open-loop gain, 95dB CMRR and a 90dB PSRR. Providing a wide 420MHz bandwidth at a gain of $A_V = 10$, a fast 300V/µs slew rate, the CLC5801 is well suited for wide band active filters and low noise loop filters for PLLs.

The low noise, wide gain-bandwidth, high slew rate and low DC errors enable applications such as medical diagnostic ultrasound, magnetic tape and disk storage, communications and optoelectronics that require maximum high-frequency signal-to-noise ratios. Low noise and offset make the CLC5801 and ideal preamplifier for CD-ROMs and receivers.

The CLC5801 consumes 16mA of supply current and can be used in either dual 5V systems or single supply applications. It can easily drive a 100Ω load to within 1.6V of either rail. The CLC5801 is available in both SOIC-8 and the tiny SOT23-5.

Features

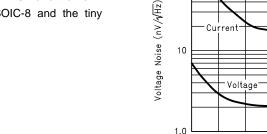
 $(T_A = 25^{\circ}C, V_S = \pm 5V, R_L = 100\Omega$ Typical unless specified).

- 420MHz, -3dB bandwidth ($A_V = 10$)
- 2nV/√Hz input voltage noise
- 1.8pA/√Hz input current noise
- 100µV input offset voltage
- 300V/µs slew rate
- 16mA supply current
- 18ns settling time

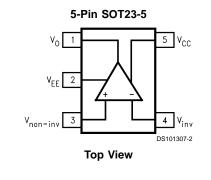
Applications

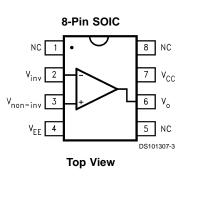
- Ultrasound preamplifier
- CD-ROM preamplifer
- Photo-diode transimpedance amplifier
- Low-noise loop filters for PLLs
- High-performance receivers

100 1k


10k 100k

Frequency (Hz)


ADC preamplifier


Equivalent Input Noise

1M 10M

Connection Diagrams

0.1

DS101307-1

100M

Ordering Information

Package	Part Number	Packaging	Transport Media	NSC	
		Marking		Drawing	
8-pin SOIC	CLC5801IM	CLC5801IM	Rails	M08A	
	CLC5801IMX	CLC5801IM	2.5k Tape and Reel		
5-pin SOT23-5	CLC5801IM5	A50A	1k Units Tape and Reel	MF05A	
	CLC5801IM5X	A50A	3k Units Tape and Reel		

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{cc}	±7V
I _{OUT} Short Circuit protected to ground. Maximum reliability is obtained if I _{OUT} does not exceed:	125mA
Common-Mode Input Voltage	±V _{CC}
Maximum Junction Temperature	+125°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature (soldering 10 sec)	+300°C
ESD (human body model)	1000V

Operating Rating(Note 1)

Thermal Resistance (θ_{JC})						
SOIC	65°C/W					
SOT23-5	115°C/W					
Thermal Resistance (θ_{JA})						
SOIC	145°C/W					
SOT23-5	185°C/W					
Temperature Range	–40°C to +85°C					
Recommended Gain Range	±10 to ±1000V/V					

Electrical Characteristics

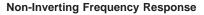
(T_A= 25°C, V_{CC} = \pm 5V, R_g = 26.1Ω, R_f= 499Ω, R_L= 100Ω; unless specified).

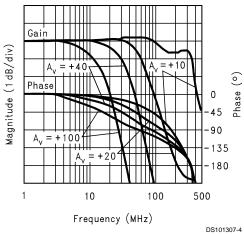
Symbol	Parameter	Conditions	Тур	Min/Max Ratings (Note 2)			Units
			+25°C	–40°C	+25°C	+85°C	
Frequence	y Domain Response						
GBW	Gain Bandwidth Product	$V_{O} < 0.4 V_{PP}$	1.8		1.3		GHz
SSBW	-3dB Bandwidth (A _V = +10)	$V_{O} < 0.4 V_{PP}$	420				
	-3dB Bandwidth (A _V = +20)	$V_{O} < 0.4 V_{PP}$	90		70		MHz
LSBW	–3dB Bandwidth	$V_{O} < 5.0 V_{PP}$	35		30		
GFP	Gain Flatness Peaking	DC to 30MHz, $V_O < 0.4V_{PP}$	0.4		0.5		dB
GFR	Gain Flatness Rolloff	DC to 30MHz, $V_O < 0.4V_{PP}$	0.2		0.5		dB
LPD	Linear Phase Deviation	DC to 30MHz, $V_O < 0.4V_{PP}$	0.8		1.5		Deg
Time Dor	nain Response	-			1	LI	
TRS	Rise and Fall Time	0.4V step	4.0		4.7		ns
TSS	Settling Time to 0.2%	2V step	18		30		ns
OS	Overshoot	0.4V step	5		10		%
SR	Slew Rate	2V step	300		250		V/µs
Distortio	n And Noise Response	- 1	l	1			
HD2	2nd Harmonic Distortion	1V _{PP} ,10MHz	-53		-48		dBc
HD3	3rd Harmonic Distortion	1V _{PP} ,10MHz	-78		-65		dBc
IMD	3rd Order Intermod. Intercept	10MHz	34				dBm
VN	Equivalent Input Noise Voltage	1MHz to 100MHz	2.0		2.7		nV/
							√Hz
ICN	Equivalent Input Noise Current	1MHz to 100MHz	1.8		2.5		pA/ √Hz
Static, DO	C Performance			1			
AOL	Open-Loop Gain	DC	96	77	86	86	dB
VIO	Input Offset Voltage (Note 3)		±100	±1000	±800	±1000	μV
DVIO	Offset Voltage Average Drift		±2	8	_	4	µV/°C
IB	Input Bias Current (Note 3)		12	40	20	20	μA
DIB	Bias Current Average Drift		-100	-250	_	-120	µA/°C
IIO	Input Offset Current		±0.2	3.4	2.0	2.0	μA
DIIO	Offset Current Average Drift			±50	_	±25	nA/°C
PSRR	Power Supply Rejection Ratio	DC	90	80	85	84	dB
CMRR	Common Mode Rejection Ratio	DC	95	84	88	86	dB
ICC	Supply Current (Note 3)	$R_1 = \infty$	16	18	17	17	mA

Electrical Characteristics (Continued)

(T_A= 25°C, V_{CC} = ±5V, R_g = 26.1\Omega, R_f= 499\Omega, R_L= 100\Omega; unless specified).

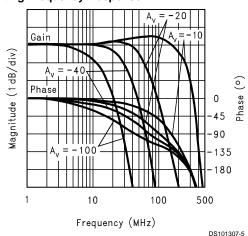
Symbol	Parameter	Conditions	Тур	Min/Max Ratings (Note 2)			Units
			+25°C	–40°C	+25°C	+85°C	
Miscellar	neous Performance	·	· ·				
RINC	Input Resistance	Common-Mode	2	0.6	1.6	1.6	MΩ
RIND		Differential-Mode	6	1	3	3	kΩ
CINC	Input Capacitance	Common-Mode	1.5	3	3	3	pF
CIND		Differential-Mode	1.9	3	3	3	pF
ROUT	Output Resistance	Closed Loop	5	50	10	10	mΩ
VO	Output Voltage Range	$R_{L} = \infty$	±3.8	±3.5	±3.7	±3.7	V
VOL		$R_{L} = 100\Omega$	±3.4	±2.8	±3.2	±3.2	V
CMIR	Input Voltage Range	Common-Mode	±3.8	±3.4	±3.5	±3.5	V
IOP	Output Current	Source	80	60	65	65	<u>م</u>
ION]	Sink	80	40	55	55	mA

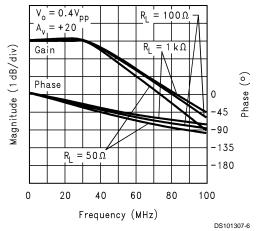

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed,

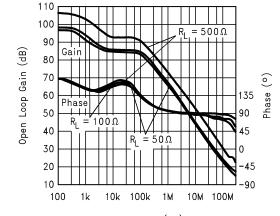

Note 2: Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

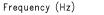
Note 3: 100% tested at +25°C.

Typical Performance Characteristics ($T_A = 25^{\circ}C$, $V_{CC} = \pm 5V$, $R_g = 26.1\Omega$, $R_f = 499\Omega$, $R_L = 100\Omega$, unless otherwise specified).

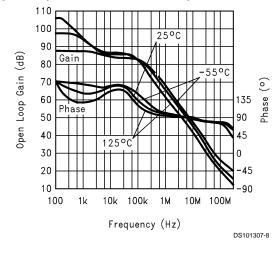

CLC5801

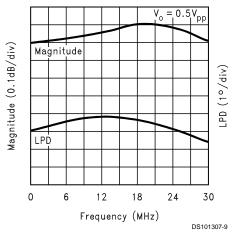


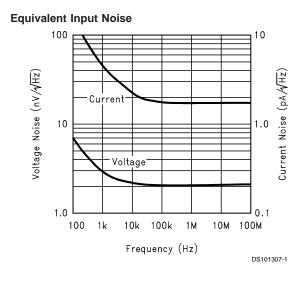

Inverting Frequency Response

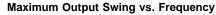

Open Loop Gain and Phase vs. R₁

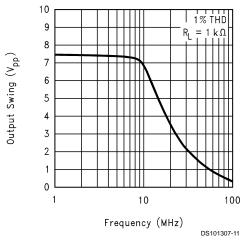
Frequency Response for Various R_Ls



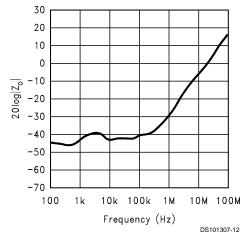


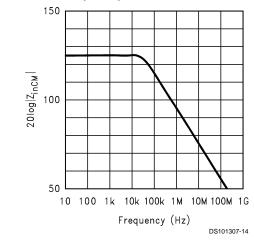


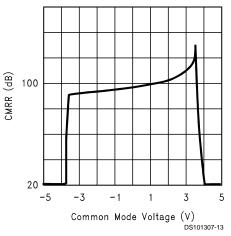

Gain Flatness & Linear Phase Deviation



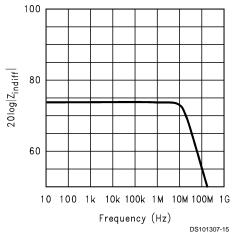
Typical Performance Characteristics ($T_A = 25^{\circ}C$, $V_{CC} = \pm 5V$, $R_g = 26.1\Omega$, $R_f = 499\Omega$, $R_L = 100\Omega$, unless otherwise specified)... (Continued)


unless otherwise specified).. (Continu

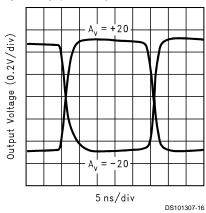


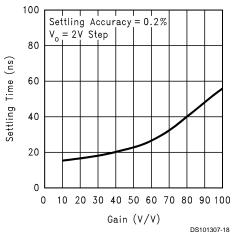

Closed-Loop Output Impedance



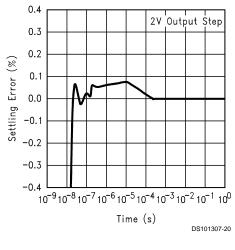

Common Mode Input Impedance

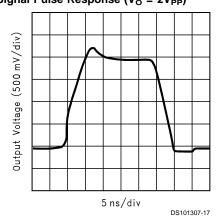
CMRR vs. Common Mode Input Voltage

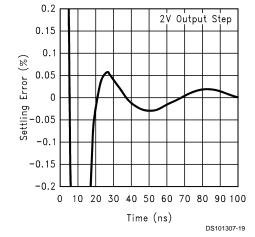


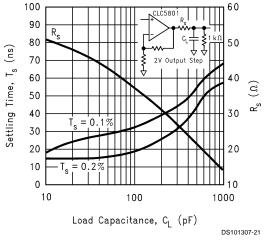


Typical Performance Characteristics ($T_A = 25^{\circ}C$, $V_{CC} = \pm 5V$, $R_g = 26.1\Omega$, $R_f = 499\Omega$, $R_L = 100\Omega$, unless otherwise specified).. (Continued)


Pulse Response ($V_O = 1V_{PP}$)



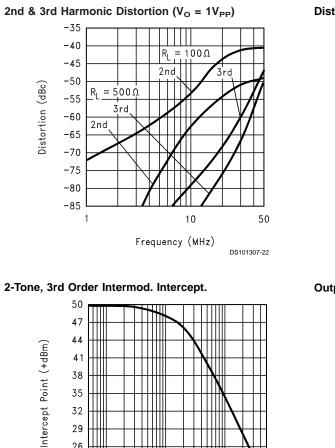


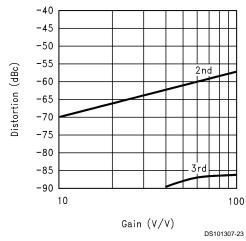


CLC5801

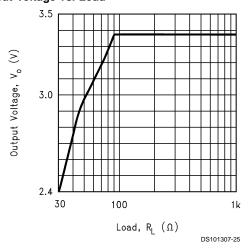
Typical Performance Characteristics ($T_A = 25^{\circ}C$, $V_{CC} = \pm 5V$, $R_g = 26.1\Omega$, $R_f = 499\Omega$, $R_L = 100\Omega$, unless otherwise specified)... (Continued)

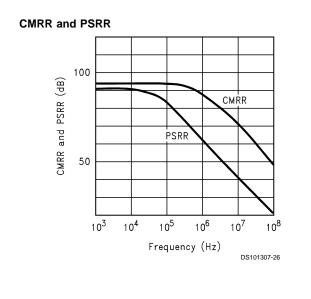
38

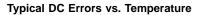

100k

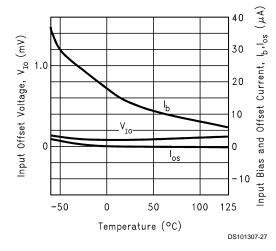

1M

Frequency (Hz)


10M


DS101307-24





Distortion vs. Gain ($V_o = 1V_{PP}$, $f_o = 3MHz$)

Application Information

Introduction

The CLC5801 is a very wide gain-bandwidth, low noise voltage feedback operational amplifier which enables applications areas such as medical diagnostic ultrasound, magnetic tape & disk storage and fiber-optics to achieve maximum high-frequency signal-to-noise ratios. The following discussion will describe the proper selection of external components in order to achieve optimum device performance.

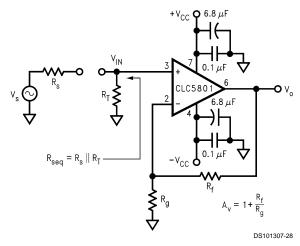
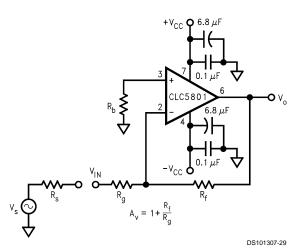



FIGURE 1. Non-Inverting Amplifier Configuration

Bias Current Cancellation

In order to cancel the bias current errors of the non-inverting configuration, the parallel combination of the gain-setting (R_g) and feedback (R_f) resistors should equal the equivalent source resistance (R_{seq}) as defined in *Figure 1*. Combining this constraint with the non-inverting gain equation also seen in *Figure 1*, allows both R_f and R_g to be determined explicitly from the following equations: R_f = A_VR_{seq} and R_g = R_f/(A_V-1). When driven from a 0Ω source, such as that from the output of an op amp, the non-inverting input of the CLC5801 should be isolated with at least a 25Ω series resistor.

As seen in *Figure 2*, bias current cancellation is accomplished for the inverting configuration by placing a resistor (R_b) on the non-inverting input equal in value to the resistance seen by the inverting input (R_f || (R_g + R_s)). R_b is recommended to be no less than 25Ω for best CLC5801 performance. The additional noise contribution of R_b can be minimized through the use of a shunt capacitor.

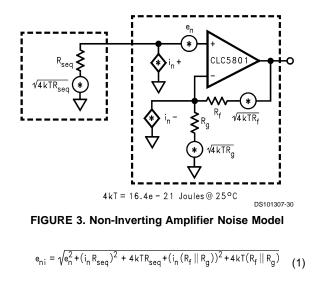

CLC5801

FIGURE 2. Inverting Amplifier Configuration

Total Input Noise vs. Source Resistance

In order to determine maximum signal-to-noise ratios from the CLC5801, an understanding of the interaction between the amplifier's intrinsic noise sources and the noise arising from its external resistors is necessary.

Figure 3 describes the noise model for the non-inverting amplifier configuration showing all noise sources. In addition to the intrinsic input voltage noise (e_n) and current noise ($i_n = i_n^+ = i_n^-$) sources, there also exists thermal voltage noise ($e_t = \sqrt{4kTR}$) associated with each of the external resistors. *Equation (1)* provides the general form for total equivalent input voltage noise density (e_{ni}). *Equation (2)* is a simplification of *Equation (1)* that assumes $R_f || R_g = R_{seq}$ for bias current cancellation. *Figure 4* illustrates the equivalent noise model using this assumption. *Figure 5* is a plot of e_{ni} against equivalent source resistance (R_{seq}) with all of the contributing noise sources of *Equation (2)* shown. This plot gives the expected e_{ni} for a given R_{seq} which assumes $R_f || R_g = R_{seq}$ for bias current cancellation. The total equivalent output voltage noise (e_{no}) is $e_{ni} \times A_V$.

Application Information (Continued)

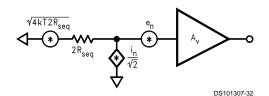
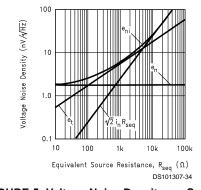



FIGURE 4. Noise Model with $R_f \parallel R_g = R_{seq}$

$$e_{ni} = \sqrt{e_n^2 + 2(i_n R_{seq})^2 + 4kT(2R_{seq})}$$
(2)

As seen in *Figure 5*, e_{ni} is dominated by the intrinsic voltage noise (e_n) of the amplifier for equivalent source resistance below 121Ω. Between 121Ω and 5.11kΩ, e_{ni} is dominated by the thermal noise (e_t = $\sqrt{4kT(2R_{seq})}$) of the external resistors. Above 5.11kΩ, e_{ni} is dominated by the amplifier's current noise (e_n/ $\sqrt{2}i_n R_{seq}$). The point at which the CLC5801's voltage noise and current noise contribute equally occurs for $R_{seq} = 786\Omega (e_n/\sqrt{2}i_n)$. As an example, configured with a gain of +20V/V giving a –3dB of 90MHz and driven from an $R_{seq} = 25\Omega$, the CLC5801 produces a total equivalent input noise voltage (e_{ni} * $\sqrt{1.57*90 \text{ MHz}}$) of 26µV_{rms}.

FIGURE 5. Voltage Noise Density vs. Source Resistance

If bias current cancellation is not a requirement, then $R_f || R_g$ does not need to equal R_{seq} . In this case, according to *Equation (1)*, $R_f || R_g$ should be as low as possible in order to minimize noise. Results similar to *Equation (1)* are obtained for the inverting configuration of *Figure 2* if R_{seq} is replaced by R_b and R_g is replaced by $R_g + R_s$. With these substitutions, *Equation (1)* will yield e_{ni} referred to the non-inverting input. Referring e_{ni} to the inverting input is easily accomplished by multiplying e_{ni} by the ratio of non-inverting to inverting gains.

Inverting Gains Less Than 10V/V

The lag compensation of *Figure 6* will achieve stability for lower gains. Placing the network between the two input terminals does not affect the closed-loop nor noise gain, but is best used for the inverting configuration because of its affect on the non-inverting input impedance.

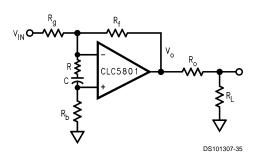


FIGURE 6. External Lag Compensation

Single-Supply Operation

The CLC5801 can be operated with single power supply as shown in *Figure 7*. Both the input and output are capacitively coupled to set the DC operating point.

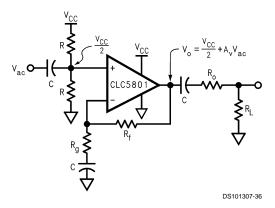


FIGURE 7. Single Supply Operation

Low Noise Transimpedance Amplifier

Figure 8 shows a transimpedance amplifier used to amplify the small signal from a Photodiode. Using a low noise amplifier such as the CLC5801 and proper design, ensures that the amplifier noise contribution is minimal. Here R_b can be used to compensate for the input bias current of the CLC5801. Generally, R_b is selected to be equal to R_f to cancel the effect of I_b flowing in each of the Op Amp input terminals.

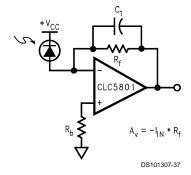


FIGURE 8. Transimpedance Amplifier Configuration

Figure 9 shows the equivalent noise analysis schematic for this circuit. The complete expression for the amplifier stage output rms noise is shown in *Equation (3)*.

$$e_{no(rms)} = \sqrt{(i_n R_b)^2 + (i_n R_f)^2 + e_n^2 + 4kTR_f + 4kTR_b}$$
 (3)

Application Information (Continued)

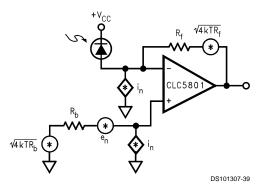


FIGURE 9. Transimpedance Amplifier Noise Model

Low Noise Integrator

The Circuit in *Figure 10* implements a deBoo integrator. Integration linearity is maintained through positive feedback. The CLC5801's low input offset voltage and matched inputs allowing bias current cancellation provide for very precise integration. Stability is maintained through the constraint on the circuit elements.

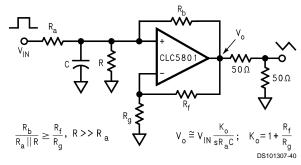


FIGURE 10. Low Noise Integrator

High-Gain Sallen-Key Active Filters

The CLC5801 is well suited for high-gain Sallen-key type of active filters. *Figure 11* shows the 2nd order Sallen-Key low pass filter topology. Using component predistortion methods as discussed in OA-21 enables the proper selection of components for these high-frequency filters.

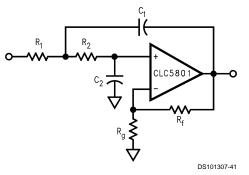


FIGURE 11. Sallen-Key Active Filter Topology

Low Noise Magnetic Media Equalizer

The circuit in *Figure 12* implements a high-performance low-noise equalizer for such applications as magnetic tape channels. The circuit combines an integrator with a bandpass filter to produce the low-noise equalization.

The circuit's simulated frequency response is illustrated in *Figure 13*.

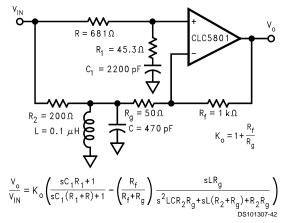


FIGURE 12. Low Noise Magnetic Media Equalizer

Application Information (Continued)

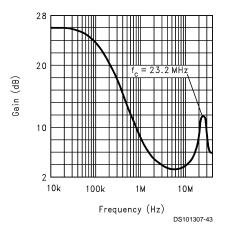
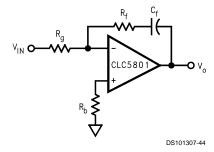
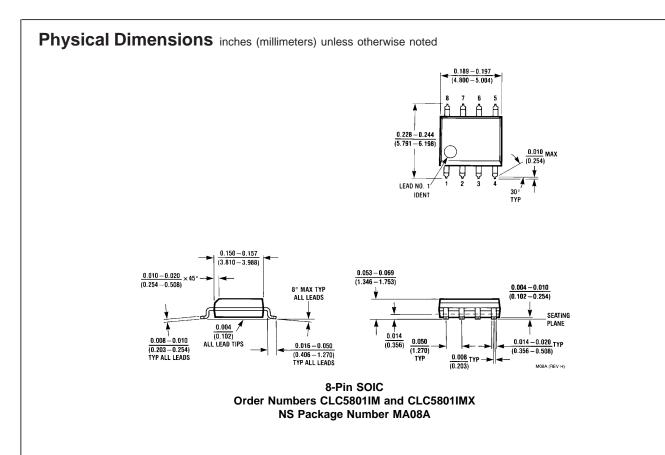
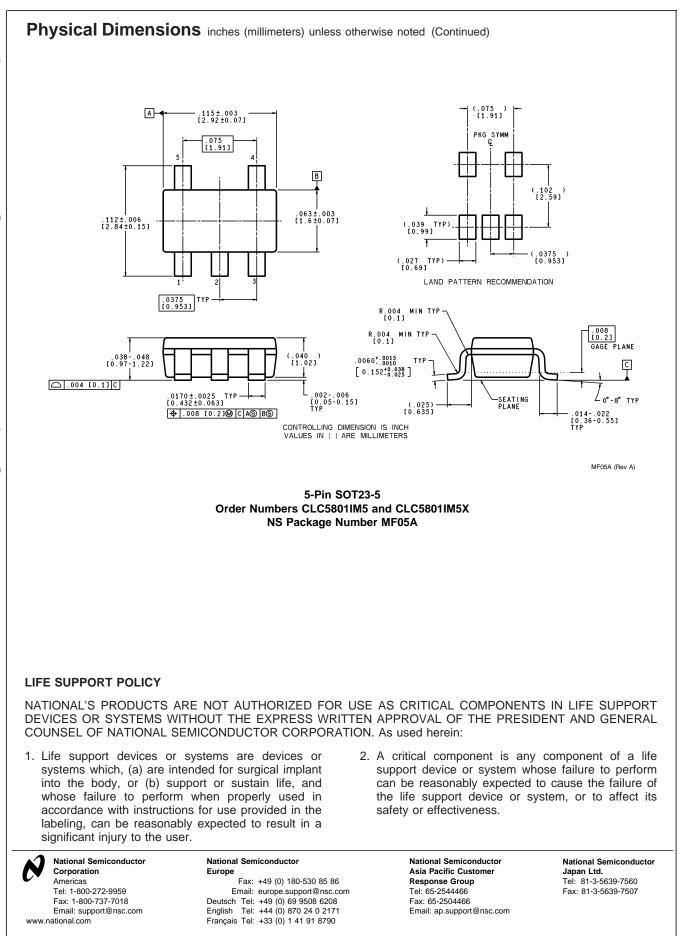



FIGURE 13. Equalizer Frequency Response

Low-Noise Phase-Locked Loop Filter


The CLC5801 is extremely useful as a Phase-Locked Loop filter in such applications as frequency synthesizers and data synchronizers. The circuit of *Figure 14* implements one possible PLL filter with the CLC5801.



Printed Circuit Board Layout

Generally, a good high-frequency layout will keep power supply and ground traces away from the inverting input and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and possible circuit oscillation, see OA-15 for more information. National includes an evaluation board with samples as a guide for high frequency lay-out and as an aid in device testing and characterization.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated