
2R IC for Optical Fiber Communication Receiver

Description

The CXB1563Q achieves the 2R optical-fiber communication receiver functions (Reshaping and Regenerating) on a single chip. This IC is also equipped with the signal interruption alarm output function, which is used to discriminate the existence of data input.

Features

- · Auto-offset canceler circuit
- Signal interruption alarm output
- 2-level switching function of identification maximum voltage amplitude for alarm block
- Single 5V power supply

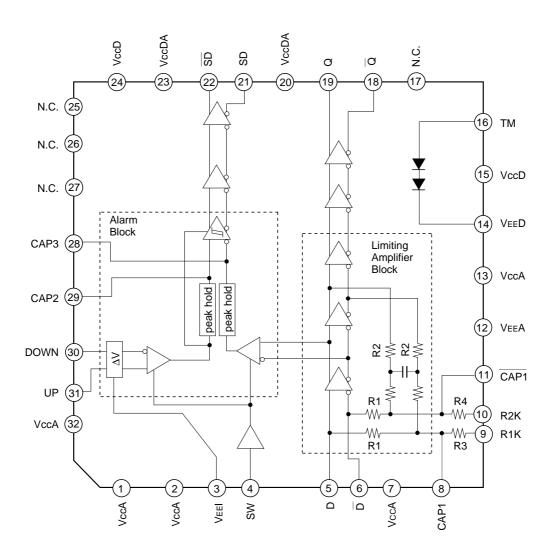
Applications

SONET/SDH : 622.08Mb/sFiber channel : 531.25Mb/s

Absolute Maximum Ratings

Supply voltage	Vcc – Vee	-0.3 to +7.0	V
Storage temperature	Tstg	-65 to +150	°C
 Input voltage difference : I VD − VD̄ I 	Vdif	0.0 to +2.5	V
SW input voltage	Vi	VEE to VCC	V
 Output current (Continuous) 	lo	0 to 50	mΑ
(Surge current)		0 to 100	mΑ

Recommended Operating Conditions


Supply voltage	VCC - VEE	5.0±0.5	V
• Termination voltage (for data/alarm)	Vcc - VT1	1.8 to 2.2	V
• Termination voltage (for alarm 2)	VT2	VEE	V
• Termination resistance (for data/alarm)	R _{T1}	45 to 55	Ω
• Termination resistance (for alarm 2)	RT2	460 to 560	Ω
Operating temperature	Та	-40 to +85	°C

Structure

Bipolar silicon monolithic IC

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

Pin Description

500	cription				
Pin No.	Symbol			Equivalent circuit	Description
		DC	AC		
1,2	VccA	0V			Positive power supply for analog block.
3	Veel	-5V		VccA \$993 \$110.3 \$110.3 Vcs SW VEEA	Generates the default voltage between UP and DOWN. The voltage (8.0mV for input conversion) can be generated between UP and DOWN (Pins 30 and 31) as alarm setting level by connecting this pin to VEEA.
4	sw	OV (OPEN) or –5V		VCCA 150k 100k VREF VEEA	Switches the identification maximum voltage amplitude. High voltage when open; the identification maximum voltage amplitude becomes 50mVp-p. Low voltage when connecting this pin to VEE; the amplitude becomes 20mVp-p.
5	D	-1.3V	-0.9V to -1.7V		Limiting amplifier block input. Be sure to make this input with
6	D	-1.3V	-0.9V to -1.7V	VccA	AC coupled.
7	VccA	0V		5 W 10k 100p 200 2k 11	Positive power supply for analog block.
8	CAP1	-1.8V		1.5k 10k 200 1k 9	Pins 8 and 11 connect a capacitor which determines the cut-off frequency for feedback
9	R1K			1.5k VEEA	block, and $1k\Omega$ is connected between Pins 8 and 9; $2k\Omega$ between Pins 10 and 11. A
10	R2K				resistor which is to be inserted in parallel with a capacitor can be
11	CAP1	-1.8V			selected 5 ways by external wiring, and DC feedback can be varied.

Pin No.	Symbol	Typical pin voltage (V)		Equivalent circuit	Description
		DC	AC	·	•
12	VEEA	-5V			Negative power supply for analog block.
13	VccA	0V			Positive power supply for analog block.
14	VEED	-5V			Negative power supply for digital block.
15	VccD	0V			Positive power supply for digital block.
16	TM	-3.4V		(14)	Chip temperature monitor.
17	N.C				No connected.
18	Q		-0.9V to -1.7V	VccDA	Data signal output. Terminate this pin in 50Ω at
19	Q		-0.9V to -1.7V	19 VEED	Vπ = −2V.
20	VccDA	0V			Positive power supply for output buffer.
21	SD		-0.9V to -1.7V	VccDA	Alarm signal output. Terminate this pin in 50Ω at
22	SD		-0.9V to -1.7V	21 ————————————————————————————————————	VTT = -2V.
23	VccDA	0V			Positive power supply for digital block.
24	VccD	0V			Positive power supply for digital block.
25	N.C				
26	N.C				No connected.
27	N.C				

Pin No.	Symbol			Equivalent circuit	Description
		DC	AC		
28	CAP3	-1.8V		29 28 VCCA 80 \$ 80 \$ 80	Connects a peak hold circuit capacitor for alarm block. 470pF should be connected to VccA each. CAP2 pin → Peak hold
29	CAP2	-1.8V		5µА 5µА VEEA	capacitor connection for alarm level setting block. CAP3 pin → Peak hold capacitor connection for limiting amplifier signal.
30	DOWN	-0.84V (for VEEI =-5V)		VccA \$ 993 \$ 110.3 \$ 110.3	Connects a resistor for alarm level setting. Default voltage can be
31	UP	-0.8V (for VEEI =-5V)		Vcs SW VEEA	generated without an external resistor by shorting the VEEI pin to VEEA.
32	VccA	0V			Positive power supply for analog block.

Electrical Characteristics

• DC characteristics

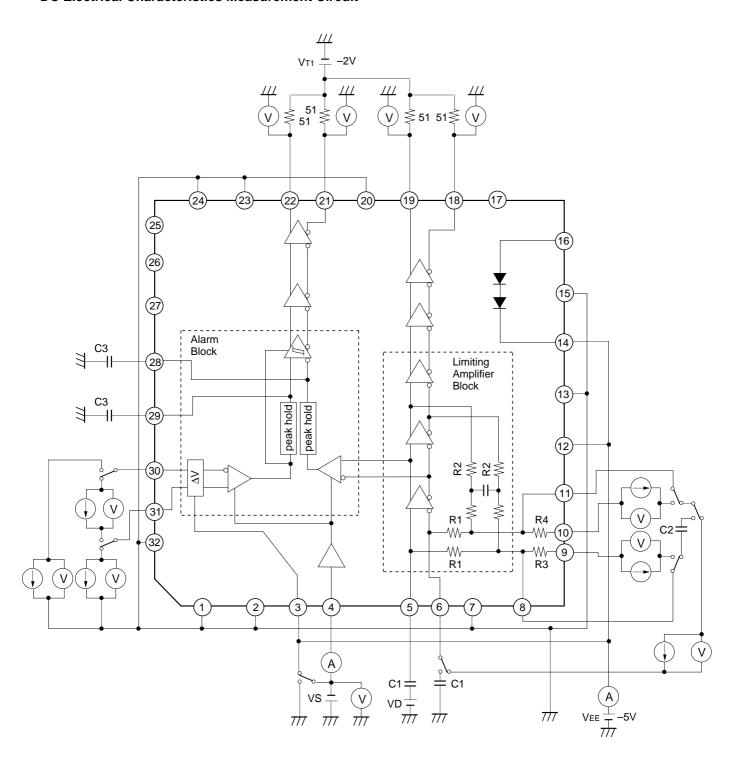
 $(Vcc = GND, Vee = -5V\pm10\%, Ta = -40 to +85°C, Vcc = VccD, VccDA, VccA Vee = VeeD, VeeA)$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply	lee	$R_{T1} = 50\Omega$, $V_{T1} = -2V$ termination	<i>–</i> 50	-37	-28	mA
Q/Q SD/SD High output voltage	Vон	$RT1 = 50\Omega$,	-1025		-880	
Q/Q SD/SD Low output voltage	VoL	$V_{T1} = -2V$ termination, Ta = 0 to 85°C	-1810		-1620	
SD/SD High output voltage 2	Vонь	$R_{T2} = 510\Omega$,	-1075		-830	mV
SD/SD Low output voltage 2	Volb	VEE termination, Ta = 0 to 85°C	-1860		-1570]
SW High input voltage	Vін		-1900		0	
SW Low input voltage	VIL		VEE		-2500	
SW High input current	Іін				2	
SW Low input current	lı∟		-60			- μA
D/D input resistance	Rin		1125	1500	1875	
Internal resistance 1 for alarm level setting	Ra1	Refer to Fig. 3.	745	993	1241	Ω
Internal resistance 2 for alarm level setting	Ra2A, B	Refer to Fig. 3.	82.7	110.3	137.9	
Pare ratio of internal resistance 2 for alarm level setting	δRa2	Ra2A/Ra2B	0.97		1.03	
Resistance between CAP1 and R1K	R3		745	993	1241	
Resistance between CAP1 and R2K	R4		1489	1986	2482	Ω

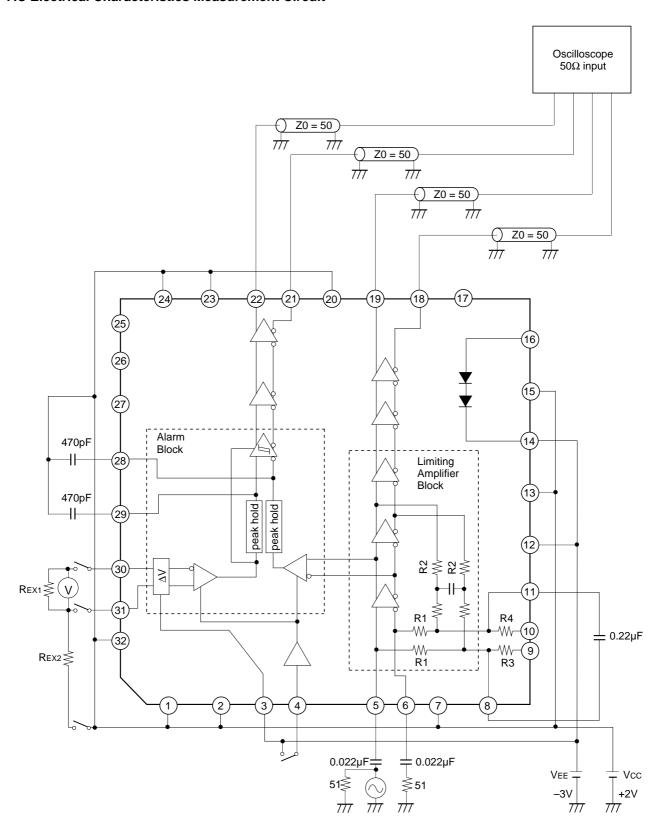
AC characteristics

(Vcc = GND, VeE = $-5V\pm10\%$, Ta = -40 to +85°C, Vcc = VccD, VccDA, VccA VeE = VeED, VeEA)

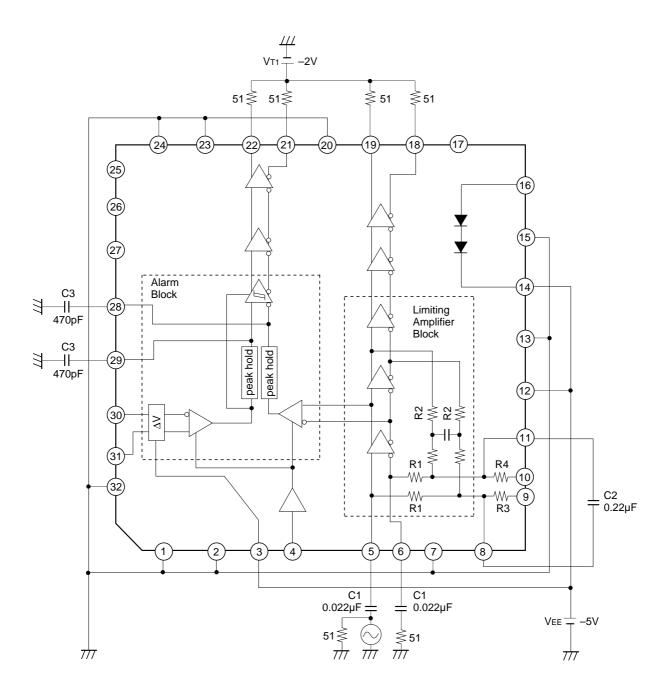
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Maximum input voltage amplitude	Vmax	Single-ended input	1600			mVp-p
Amplifier gain (in Limiting Amplifier)	Gv		40			dB
Identification maximum voltage	VminA1	SW pad: Low, single-ended input	20			mVp-p
amplitude of alarm level	VminA2	SW pad: Open High, single-ended input	50			шур-р
Hysteresis width	ΔΡ		4	6	7	dB
SD response assert time	Tas	$Low \to High^{*1}$	0		100	
SD response deassert time	Tdas	$High \to Low^{\mathbf{*2}}$	2.3		100	
SD response assert time for alarm level default	Tasd	$Low \to High^{*3}$	0		100	μs
SD response deassert time for alarm level default	Tdasd	High → Low*4	2.3		100	
Alarm setting level for default	Vdef	UP/DOWN pins; Open, connect VEEI to VEE.	6.6	8.0	9.3	mV
Propagation delay time	TPD	D to Q	0.4	1.0	1.6	ns
Q/Q rise time	Tr_Q		250		450	nc
Q/Q fall time	Tf_Q	VEE = -5V, Ta = 0 to 85°C 20% to 80% 0.49			450	ps
SD/SD rise time	Tr_SD				1.6	ne
SD/SD fall time	Tf_SD				1.6	ns


^{*1} Vup – Vdown = 100mV, Vin = 100mVp-p (single ended), SW pin: High Peak hold capacitance (CAP2, CAP3 pins) of 470pF; connect Veel to Vee.

^{*2} Vup – Vdown = 100mV, Vin = 1Vp-p (single ended), SW pin: High Peak hold capacitance (CAP2, CAP3 pins) of 470pF; connect Veel to Vee.

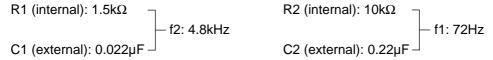

^{*3} Vin = 50mVp-p (single ended), SW pin: Low Peak hold capacitance (CAP2, CAP3 pins) of 470pF; connect Veel to Vee.

^{*4} Vin = 1Vp-p (single ended), SW pin: Low Peak hold capacitance (CAP2, CAP3 pins) of 470pF; connect Veel to Vee.


DC Electrical Characteristics Measurement Circuit

AC Electrical Characteristics Measurement Circuit

Application Circuit



Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Notes on Operation

1. Limiting amplifier block

The limiting amplifier block is equipped with the auto-offset canceler circuit. When external capacitors C1 and C2 are connected as shown in Fig. 1, the DC bias is set automatically in this block. External capacitor C1 and IC internal resistor R1 determine the low input cut-off frequency f2 as shown in Fig. 2. Similarly, external capacitor C2 and IC internal resistor R2 determine the high cut-off frequency f1 for DC bias feedback. Since peaking characteristics may occur in the low frequency area of the amplifier gain characteristics depending on the f1/f2 combination, set the C1 and C2 so as to avoid the occurrence of peaking characteristics. The target values of R1 and R2 and the typical values of C1 and C2 are as indicated below. When a single-ended input is used, provide AC grounding by connecting Pin 6 to a capacitor which has the same capacitance as capacitor C1.

 $1k\Omega$ is incorporated between Pins 8 and 9; $2k\Omega$ between Pins 10 and 11. A resistance value which is to be inserted in parallel with a capacitor f2 can be selected 5 ways (∞ , $3k\Omega$, $2k\Omega$, $1k\Omega$, $1kl/2k\Omega$) by external wiring, and DC feedback can be varied.

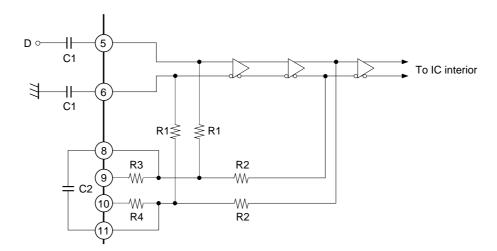


Fig. 1

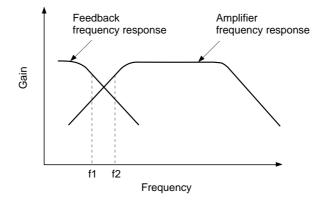


Fig. 2

SONY CXB1563Q

2. Alarm block

In order to operate the alarm block, give the voltage difference between Pins 30 and 31 to set an alarm level and connect the peak hold capacitor C3 shown in Fig. 3.

This IC has two setting methods of alarm level; one is to connect VEE to Pin 3 and leave Pins 30 and 31 open to set an alarm level default value (8mV for input conversion). The other is to connect Pin 3 to VEE and set a desired alarm level using the external resistors REX1 and REX2 and REX3 shown in Fig. 3.

Connect Rex1 between Pins 30 and 31, or between Pin 30 and Vcc when less alarm level is desired to be set than its default value; connect Rex2 between Pin 31 and Vcc potential when more alarm level is desired to be set than its default value. However, the Pin 31 voltage must be higher than that of Pin 30. Refer to Figs. 5, 8 to 13 for this alarm level setting.

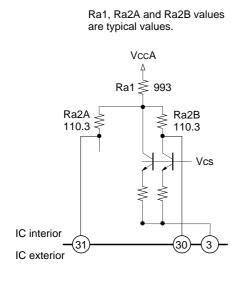
This IC also features two-level setting of identification maximum voltage amplitude. The amplitude is set to 50mVp-p when Pin 4 is left open (High level) and it is set to 20mVp-p when Pin 4 is Low level. Therefore, noise margin can be increased by setting Pin 4 to Low level when small signal is input. The relation of input voltage and peak hold output voltage is shown in Fig. 6.

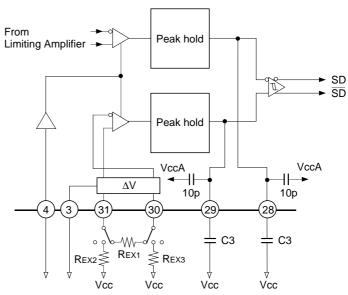
In the relation between the alarm setting level and hysteresis width, the hysteresis width is designed to maintain a constant gain (design target value: 6dB) as shown in Fig. 4. The C3 capacitance value should be set so as to obtain desired assert time and deassert time settings for the alarm signal.

The electrical characteristics for the SD response assert and deassert times are guaranteed only when the waveforms are input as shown in the timing chart of Fig. 7.

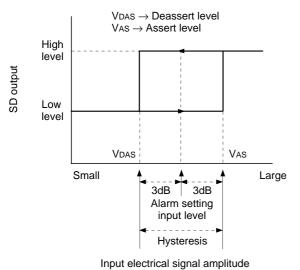
The typical values of Rex1, Rex2, Rex3 and C3 are as follows: (Approximately 10pF capacitor is built in Pins 28 and 29 each.)

 $\text{Rex1}:217\Omega$ (when the alarm level is set to 4mV for input conversion.)


REx2: 634Ω (when the alarm level is set to 19mV for input conversion.)


Rex3: $4k\Omega$ (when the alarm level is set to 4mV for input conversion.)

C3:470pF


The table below shows the alarm logic.

Optical signal input state	SD	SD
Signal input	High level	Low level
Signal interruption	Low level	High level

Fig. 3 – 12 –

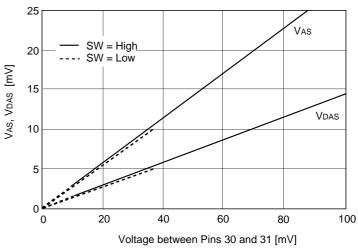


Fig. 4

Fig. 5

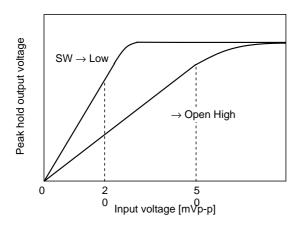


Fig. 6

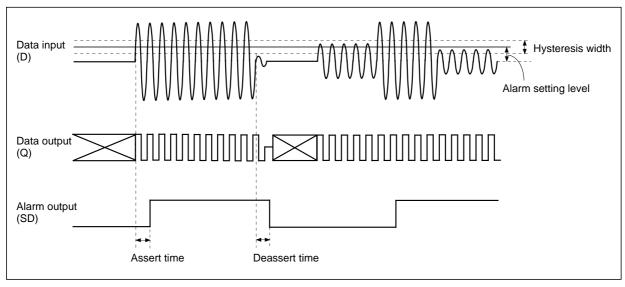
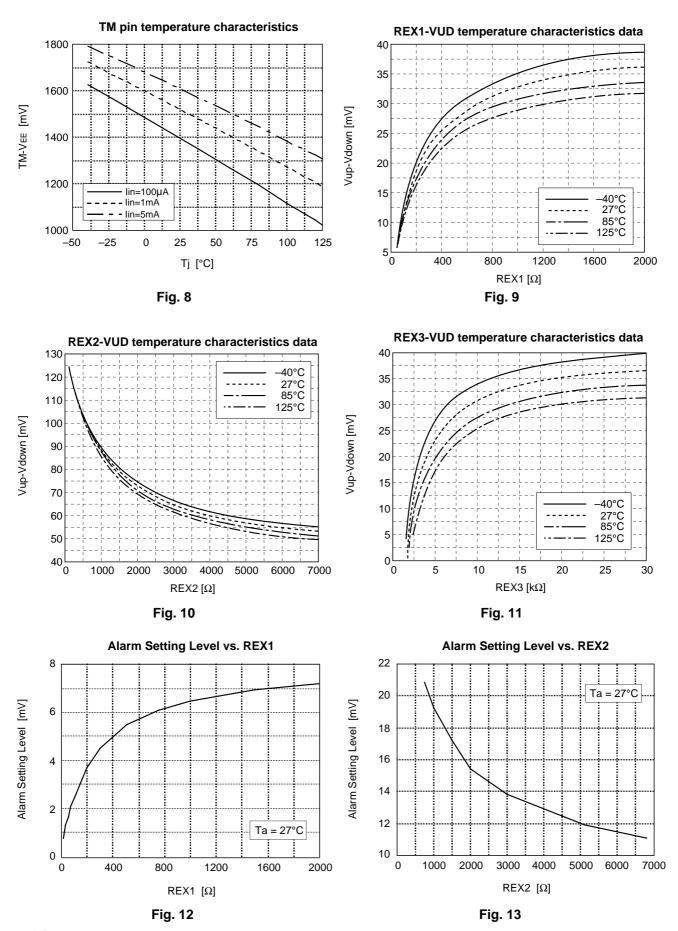



Fig. 7

3. Others

Pay attention to handling this IC because its electrostatic discharge strength is weak.

Example of Representative Characteristics

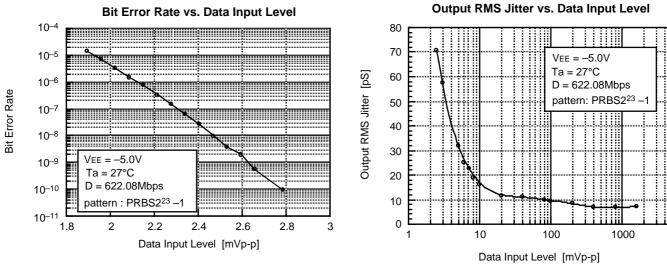


Fig. 14 Fig. 15

Q Output Waveform

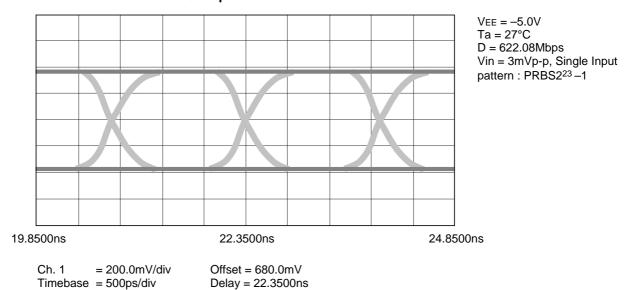
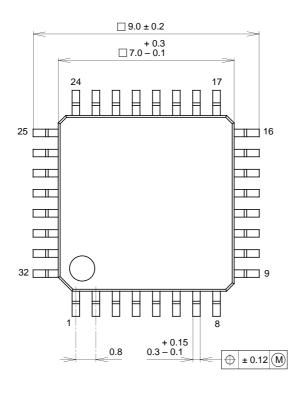
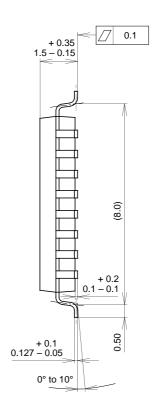




Fig. 16

Package Outline Unit: mm

32PIN QFP (PLASTIC)

SONY CODE	QFP-32P-L01
EIAJ CODE	*QFP032-P-0707-A
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	0.2g