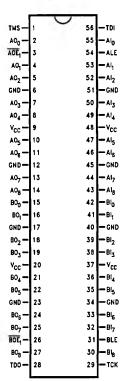


SCAN182373A Transparent Latch with 25 Ω Series Resistor Outputs

General Description


The SCAN182373A is a high performance BiCMOS transparent latch featuring separate data inputs organized into dual 9-bit bytes with byte-oriented latch enable and output enable control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture with the incorporation of the defined boundary-scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK).

Features

- IEEE 1149.1 (JTAG) Compliant
- High performance BiCMOS technology
- lacksquare 25 Ω series resistor outputs eliminate need for external terminating resistors
- Buffered active-low latch enable
- TRI-STATE® outputs for bus-oriented applications
- 25 mil pitch SSOP (Shrink Small Outline Package)
- Includes CLAMP, IDCODE and HIGHZ instructions
- Additional instructions SAMPLE-IN, SAMPLE-OUT and EXTEST-OUT
- Power up TRI-STATE for hot insert
- Member of National's SCAN Products

Ordering Code: See Section 11

Connection Diagram

Pin Names	Description
Al ₍₀₋₈₎ , Bl ₍₀₋₈₎	Data Inputs
ALE, BLE	Latch Enable Inputs
AOE ₁ , BOE ₁	TRI-STATE Output Enable Inputs
AO ₍₀₋₈₎ , BO ₍₀₋₈₎	TRI-STATE Latch Outputs

Order Number	Description
SCAN182373ASSC	SSOP in Tubes
SCAN182373ASSCX	SSOP in Tape and Reel
SCAN182373AFMQB	Military Flatpak

TL/F/11544-1

Truth Table

	Inputs		AO (0-8)
ALE	†AOE1	AI (0-8)	AG (0-8)
Х	н	х	Z
н	L	L	L
/ н	L	н	н
L	L	X	AO ₀

	Inputs						
BLE	†BOE ₁	BI (0-8)	BO (0-8)				
X	Н	×	z				
н	L	L	L				
н	L	Н	н				
L	L	×	BO ₀				

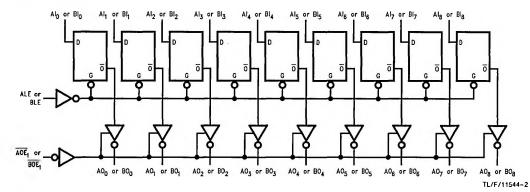
H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

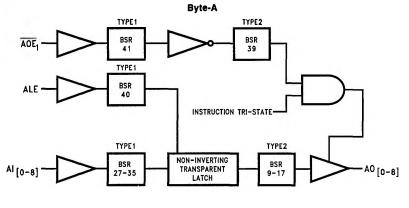
Z = High Impedance

AO₀ = Previous AO before H-to-L transition of ALE

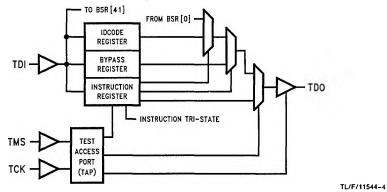

BO₀ = Previous BO before H-to-L transition of BLE

† = Inactive-to-active transition must occur to enable outputs upon power-up.

Functional Description

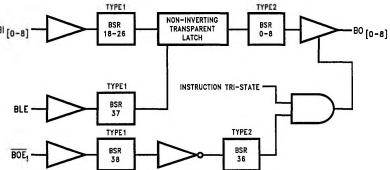

The SCAN182373A consists of two sets of nine D-type latches with TRI-STATE standard outputs. When the Latch Enable (ALE or BLE) input is HIGH, data on the inputs (Al $_{(D-8)}$ or Bl $_{(D-9)}$) enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its input changes. When Latch Enable is LOW, the latches store the information that was present on the inputs a set-up time preceding the HIGH-to-LOW transition of the Latch Enable. The TRI-STATE standard outputs are controlled by the Output Enable (\overline{AOE}_1 or \overline{BOE}_1) input. When Output Enable is LOW, the standard outputs are in the 2-state mode. When Output Enable is HIGH, the standard outputs are in the high impedance mode, but this does not interfere with entering new data into the latches.

Logic Diagram



Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Block Diagrams

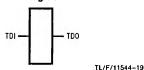


Tap Controller

Byte-B TYPE2 TL/F/11544-3

TL/F/11544-5

Note: BSR stands for Boundary Scan Register.


Description of BOUNDARY-SCAN Circuitry

The scan cells used in the BOUNDARY-SCAN register are one of the following two types depending upon their location. Scan cell TYPE1 is intended to solely observe system data, while TYPE2 has the additional ability to control system data. (See IEEE Standard 1149.1 Figure 10-11 for a further description of scan cell TYPE 1 and Figure 10-12 for a further description of scan cell TYPE 2.)

Scan cell TYPE 1 is located on each system input pin while scan cell TYPE2 is located at each system output pin as well as at each of the two internal active-high output enable signals. AOE controls the activity of the A-outputs while BOE controls the activity of the B-outputs. Each will activate their respective outputs by loading a logic high.

The BYPASS register is a single bit shift register stage identical to scan cell TYPE1. It captures a fixed logic low.

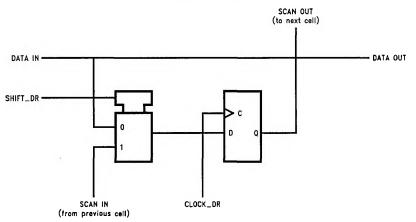
Bypass Register Scan Chain Definition Logic 0

SCAN182373A Product IDCODE (32-Bit Code per IEEE 1149.1)

Version	Entity	Part Number	Manufacturer ID	Required by 1149.1
0000	111111	0000001000	00000001111	1

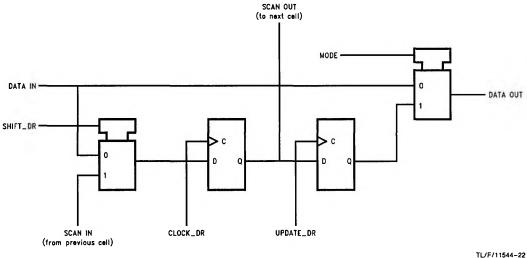
MSB LSB

The INSTRUCTION register is an 8-bit register which captures the default value of 10000001 (SAMPLE/PRELOAD) during the CAPTURE-IR instruction command. The benefit of capturing SAMPLE/PRELOAD as the default instruction during CAPTURE-IR is that the user is no longer required to shift in the 8-bit instruction for SAMPLE/PRELOAD. The sequence of: CAPTURE-IR → EXIT1-IR → UPDATE-IR will update the SAMPLE/PRELOAD instruction. For more information refer to the section on instruction definitions.



MSB → LSB

Instruction
EXTEST
SAMPLE/PRELOAD
CLAMP
HIGH-Z
SAMPLE-IN
SAMPLE-OUT
EXTEST-OUT
IDCODE
BYPASS
BYPASS


Description of BOUNDARY-SCAN Circuitry (Continued)

Scan Cell TYPE1

TL/F/11544-21

Scan Cell TYPE2

Description of BOUNDARY-SCAN Circuitry (Continued) BOUNDARY-SCAN Register Scan Chain Definition (42 Bits in Length) TDI Р3 TYPE 1 AOE₁ P54 TYPE1 ALE TYPE2 AOE 39 P26 TYPE1 BOE₁ 38 P31 TYPE1 BLE 37 TYPE2 TDO BOE 36 P27 TYPE2 P55 TYPE1 P30 TYPE1 TYPE2 P2 Alo BI₈ AO₀ B08 35 18 17 P4 TYPE2 P53 TYPE1 P32 TYPE1 P25 TYPE2 BI₇ AO₁ Al_1 34 19 16 BO₇ P52 TYPE1 P33 TYPE 1 P5 TYPE2 P24 TYPE2 A0₂ B0₆ Al2 BI₆ 33 20 15 2 P7 TYPE2 P22 TYPE2 P50 TYPE1 P35 TYPE1 Alz 32 BI₅ 21 A03 BO₅ P49 TYPE1 P36 TYPE1 P8 TYPE2 P21 TYPE2 BI₄ AO₄ B0₄ Al4 31 22 13 P47 TYPE 1 P38 TYPE1 P10 TYPE2 P19 TYPE2 BI₃ B03 A0₅ Al_5 30 23 12 5 P46 TYPE1 P39 TYPE1 P11 TYPE2 P18 TYPE2 AO₆ B0₂ Bl₂ Al₆ 29 24 P44 TYPE1 P41 TYPE1 P13 TYPE2 P16 TYPE2 BI₁ Al₇ A07 BO₁ 28 25 10 P43 TYPE1 P42 TYPE1 P14 TYPE2 P15 TYPE2 Al₈ BI_0 AO₈ BO₀ 27 26 9 TL/F/11544-23

Description of BOUNDARY-SCAN Circuitry (Continued) Input BOUNDARY-SCAN Register Scan Chain Definition (22 Bits in Length) When Sample in Is Active TDI P3 TYPE1 AOE₁ 41 P54 TYPE 1 ALE 40 P26 TYPE 1 BOE₁ 38 P31 TYPE 1 37 BLE TDO P55 TYPE 1 P30 TYPE1 BI₈ Alo 35 P53 TYPE 1 P32 TYPE1 BI₇ P52 TYPE1 P33 TYPE1 Al₂ BI₆ 33 20 P50 TYPE1 P35 TYPE1 BI₅ Al₃ 32 P49 TYPE1 P36 TYPE1 BI₄ Al4 22 P47 TYPE1 P38 TYPE1 Al₅ Bl_3 30 23 P46 TYPE1 P39 TYPE1 Al₆ BI₂ 29 24 TYPE1 P41 TYPE1 P44 Al₇ BI₁ TYPE1 TYPE 1 P43 P42 Al₈ BI₀ 27 26 TL/F/11544-24

Description of BOUNDARY-SCAN Circuitry (Continued) Output BOUNDARY-SCAN Register Scan Chain Definition (20 Bits in Length) When Sample Out and Extest Out are Active TDI TYPE 2 AOE TYPE2 TDO BOE 36 TYPE2 P27 TYPE2 P2 AO₀ B0₈ 17 P4 TYPE2 P25 TYPE2 AO₁ B0₇ P24 TYPE2 P5 TYPE2 B0₆ A02 P7 TYPE2 P22 TYPE2 A03 B0₅ TYPE2 Р8 TYPE2 P21 AO4 B04 13 P10 TYPE2 P19 TYPE2 A05 B03 12 P11 TYPE2 P18 TYPE2 B0₂ A06 P13 TYPE2 P16 TYPE2 A07 B0₁ TYPE2 TYPE2 P14 P15 B0₀ A0₈ TL/F/11544-25

Description of BOUNDARY-SCAN Circuitry (Continued)

BOUNDARY-SCAN Register Definition Index

Blt No.	Pin Name	Pin No.	Pin Type	Scan C	eli Type
41	AOE ₁	3	Input	TYPE1	
40	ALE	54	Input	TYPE1	
39	AOE		Internal	TYPE2	Control
38	BOE ₁	26	Input	TYPE1	Signals
37	BLE	31	Input	TYPE1	
36	BOE		Internal	TYPE2	
35	Al ₀	55	Input	TYPE1	
34	Al ₁	53	Input	TYPE1	
33	Al ₂	52	Input	TYPE1	
32	Al ₃	50	Input	TYPE1	
31	Al ₄	49	Input	TYPE1	A-in
30	Al ₅	47	Input	TYPE1	
29	Al ₆	46	Input	TYPE1	
28	Al ₇	44	Input	TYPE1	
27	Ala	43	Input	TYPE1	_
26	BI ₀	42	Input	TYPE1	
25	BI ₁	41	Input	TYPE1	
24	Bl ₂	39	Input	TYPE1	
23	BI ₃	38	Input	TYPE1	
22	BI ₄	36	Input	TYPE1	B-in
21	BI ₅	35	Input	TYPE1	
20	BI ₆	33	Input	TYPE1	
19	BI ₇	32	Input	TYPE1	
18	Ble	30	Input	TYPE1	
17	AO ₀	2	Output	TYPE2	
16	AO ₁	4	Output	TYPE2	
15	AO ₂	5	Output	TYPE2	
14	AO ₃	7	Output	TYPE2	
13	AO ₄	8	Output	TYPE2	A-out
12	AO ₅	10	Output	TYPE2	
11	AO ₆	11	Output	TYPE2	
10	AO ₇	13	Output	TYPE2	1
99	AO ₈	14	Output	TYPE2	
8	BO ₀	15	Output	TYPE2	
7	BO ₁	16	Output	TYPE2	
6	BO ₂	18	Output	TYPE2	}
5	BO ₃	19	Output	TYPE2	_
4	BO ₄	21	Output	TYPE2	B-out
3	BO ₅	22	Output	TYPE2	
2	BO ₆	24	Output	TYPE2	
1	BO ₇	25	Output	TYPE2	
0	BO ₈	27	Output	TYPE2	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature -65°C to +150°C

Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias

 Ceramic
 -55°C to +175°C

 Plastic
 -55°C to +150°C

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

oltage Applied to Any Output in the Disabled or

Power-Off State -0.5V to +5.5V in the HIGH State -0.5V to V_{CC}

Current Applied to Output

in LOW State (Max) Twice the Rated I_{OL} (mA)

DC Latchup Source Current

Commercial -500 mA Military -300 mA Over Voltage Latchup (I/O) 10V ESD (HBM) Min 2000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit of current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military -55°C to +125°C Commercial -40°C to +85°C

Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter		Vcc	Min	Тур	Max	Units	Conditions
V _{IH}	Input HIGH Voltage			2.0			v	Recognized HIGH Signal
V _{IL}	Input LOW Voltage					8.0	V	Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage		Min			-1.2	V	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		Min	2.5			V	1 _{OH} = -3 mA
		Mil	Min	2.0			V	I _{OH} = -24 mA
		Comm	Min	2.0			V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage	Mil	Min			0.8	V	I _{OL} = 12 mA
		Comm	Min			0.8	V	I _{OL} = 15 mA
l _{IH}	Input HIGH Current	All Others	Max			5	μА	V _{IN} = 2.7V (Note 1)
		AllOttibis	Мах			5	μА	V _{IN} = V _{CC}
	•	TMS, TDI	Мах			5	μА	V _{IN} = V _{CC}
I _{BVI}	Input HIGH Current Breakdown Test		Max		,	7	μΑ	V _{IN} = 7.0V
I _{BVIT}	Input HIGH Current Breakdown Test (I/O)		Max			100	μΑ	V _{IN} = 5.5V
I _{IL}	Input LOW Current	All Others	Max			-5	μА	V _{IN} = 0.5V (Note 1)
		All Others	Max			-5	μА	V _{IN} = 0.0V
		TMS, TDI	Max			-385	μΑ	V _{IN} = 0.0V
V _{ID}	Input Leakage Test		0.0	4.75			٧	I _{ID} = 1.9 μA All Other Pins Grounded
I _{IH} + I _{OZH}	Output Leakage Current		Max			50	μА	V _{OUT} ≈ 2.7V
I _{IL} + L _{OZL}	Output Leakage Current		Max			-50		V _{OUT} = 0.5V
lozh	Output Leakage Current		Max			50	μΑ	V _{OUT} = 2.7V
lozL	Output Leakage Current		Max			-50	μА	V _{OUT} = 0.5V
los	Output Short-Circuit Current		Max	-100		-275	mA	V _{OUT} = 0.0V

Note 1: Guaranteed not tested.

DC Electrical Characteristics (Continued)

Symbol	Parameter		Vcc	Min	Тур	Max	Units	Conditions
ICEX	Output HIGH Leakage Current	Max			50	μА	V _{OUT} = V _{CC}	
I _{ZZ}	Bus Drainage Test	0.0			100	μА	V _{OUT} = 5.5V All Others Grounded	
Іссн	I _{CCH} Power Supply Current		Max			250	μА	V _{OUT} = V _{CC} ; TDI, TMS = V _{CC}
						1.0	mA	$V_{OUT} = V_{CC}$; TDI, TMS = GND
ICCL	Power Supply Current	Power Supply Current				65	mA	$V_{OUT} = LOW; TDI, TMS = V_{CC}$
			Max			65.8	mA	$V_{OUT} = LOW; TDI, TMS = GND$
Iccz	Power Supply Current		Max			250	μΑ	TDI, TMS = V _{CC}
		Мах			1.0	mA	TDI, TMS = GND	
ГССТ	Additional I _{CC} /Input	All Other Inputs	Мах			2.9	mA	$V_{IN} = V_{CC} - 2.1V$
		TDI, TMS inputs	Max			3	mA	$V_{IN} = V_{CC} - 2.1V$
ICCD	Dynamic I _{CC}	No Load	Max			0.2	mA/ MHz	Outputs Open One Bit Toggling, 50% Duty Cycle

Note 1: Guaranteed not tested.

AC Electrical Characteristics Normal Operation: See Section 4

Symbol Par				Military		C	ommercial			
	Parameter	V _{CC} *		-55°C to + C _L = 50 pF		_ ~	-40°C to + L = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Тур	Max]	
t _{PLH}	Propagation Delay D to Q	5.0				1.2 2.0	3.7 4.5	6.5 7.4	ns	4-1, 2
t _{PLH} t _{PHL}	Propagation Delay LE to Q	5.0				1.3 1.8	4.1 4.5	7.4 7.3	ns	4-1, 2
t _{PLZ}	Disable Time	5.0				1.6 1.8	4.9 6.0	9.0 10.7	ns	4-3, 4
t _{PZL} t _{PZH}	Enable Time	5.0				1.6 1.0	6.0 5.0	9.5 9.3	ns	4-3, 4

*Voltage Range 5.0V ± 0.5V

AC Operating Requirements Normal Operation: See Section 4

			Military	Commercial		
Symbol	Parameter	V _{CC} *	$T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C}$ $C_L = 50 \text{ pF}$	$T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$	Units	Fig. No.
			Guarantee			
ts	Setup Time, H or L Data to LE	5.0		1.7	ns	4-5
t _H	Hold Time, H or L LE to Data	5.0		1.6	ns	4-5
t _W	LE Pulse Width	5.0		2.3	ns	4-2

*Voltage Range 5.0V ±0.5V

AC Electrical Characteristics Scan Test Operation: See Section 4

				Military		C	ommercia	I		
Symbol	Parameter		$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$ $C_L = 50 \text{ pF}$			T _A = -	Units	Fig. No.		
			Min	Тур	Max	Min	Тур	Max]	
t _{PLH} t _{PHL}	Propagation Delay TCK to TDO	5.0				3.6 4.8	5.8 7.4	8.6 10.6	ns	4-8
t _{PLZ} t _{PHZ}	Disable Time TCK to TDO	5.0				2.7 4.0	5.6 7.1	9.0 10.9	ns	4-9, 1
t _{PZL} t _{PZH}	Enable Time TCK to TDO	5.0			_	5.2 3.6	8.6 6.6	12.5 10.1	ns	4-9, 1
t _{PLH}	Propagation Delay TCK to Data Out during Update-DR State	5.0				3.9 5.1	6.4 8.0	9.5 11.6	ns	4-8
t _{PLH}	Propagation Delay TCK to Data Out during Update-IR State	5.0				4.7 5.7	7.7 9.1	11.3 13.1	ns	4-8
t _{PLH} t _{PHL}	Propagation Delay TCK to Data Out during Test Logic Reset State	5.0				5.5 6.7	9.2 10.7	13.6 15.6	ns	4-8
t _{PLZ}	Disable Time TCK to Data Out during Update-DR State	5.0				4.1 4.7	7.7 8.4	12.1 12.7	ns	4-9, 1
t _{PLZ} t _{PHZ}	Disable Time TCK to Data Out during Update-IR State	5.0				4.2 4.7	8.3 9.0	13.5 14.0	ns	4-9, 1
t _{PLZ} t _{PHZ}	Disable Time TCK to Data Out during Test Logic Reset State	5.0				5.5 6.3	10.1 10.8	15.6 16.2	ns	4-9, 1
t _{PZL} t _{PZH}	Enable Time TCK to Data Out during Update-DR State	5.0				5.8 4.3	9.6 7.7	14.2 11.7	ns	4-9, 1
t _{PZL} t _{PZH}	Enable Time TCK to Data Out during Update-IR State	5.0				6.1 4.7	11.0 9.0	16.0 13.7	ns	4-9, 1
t _{PZL} t _{PZH}	Enable Time TCK to Data Out during Test Logic Reset State	5.0				7.3 5.8	12.5 10.5	18.3 15.8	ns	4-9, 1

^{*}Voltage Range 5.0V ±0.5V

AC Operating Requirements Scan Test Operation: See Section 4

Symbol	Parameter	(V)	Military T _A = -55°C to + 125°C C _L = 50 pF	Commercial $T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_{L} = 50 \text{ pF}$	Units	Flg.
			Guarantee			
ts	Setup Time, Data to TCK (Note 2)	5.0		2.7	ns	4-11
tн	Hold Time, Data to TCK (Note 2)	5.0		2.4	ns	4-11
ts	Setup Time, H or L AOE ₁ , BOE ₁ to TCK (Note 1)	5.0		5.1	ns	4-11
tH	Hold Time, H or L TCK to AOE ₁ , BOE ₁ (Note 1)	5.0		1.8	ns	4-11
ts	Setup Time, H or L Internal AOE, BOE, to TCK (Note 3)	5.0		3.5	ns	4-11
t _H	Hold Time, H or L TCK to Internal AOE, BOE (Note 3)	5.0		1.8	ns	4-11
ts	Setup Time ALE, BLE (Note 4) to TCK	5.0		5.1	ns	4-11
tн	Hold Time TCK to ALE, BLE (Note 4)	5.0		1.8	ns	4-11
ts	Setup Time, H or L TMS to TCK	5.0		7.9	ns	4-11
t _H	Hold Time, H or L TCK to TMS	5.0		1.8	ns	4-11
t _S	Setup Time, H or L TDI to TCK	5.0		6.0	ns	4-11
t _H	Hold Time, H or L TCK to TDI	5.0		3.0	ns	4-11
tw	Pulse Width TCK H L	5.0		10.3 10.3	ns	4-12
f _{max}	Maximum TCK Clock Frequency	5.0		50	MHz	
t _{PU}	Wait Time, Power Up to TCK	5.0		100	ns	
t _{DN}	Power Down Delay	0.0		100	ms	

^{*}Voltage Range 5.0V ±0.5V.

All Input Timing Delays involving TCK are measured from the rising edge of TCK.

Note 1: Timing pertains to BSR 38 and 41 only.

Note 2: This delay represents the timing relationship between the data input and TCK at the associated scan cells numbered 0-8, 9-17, 18-26 and 27-35.

Note 3: This delay represents the timing relationship between AOE/BOE and TCK for scan cells 36 and 39 only.

Note 4: Timing pertains to BSR 37 and 40 only.

Capacitance

Symbol	Parameter	Тур	Units	Conditions, T _A = 25°C		
C _{IN}	Input Capacitance	5.8	pF	$V_{CC} = 0.0V$		
C _{OUT} (Note 1)	Output Capacitance	13.8	pF	V _{CC} = 5.0V		

Note 1: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-863B, Method 3012