D2831, MARCH 1984-REVISED SEPTEMBER 1987

- Contains D-type Flip-Flops with Preset and Clear, NAND, NOR, and Inverter Gates
- Package Options Include Plastic "Small Outline" Packages, Both Plastic and Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

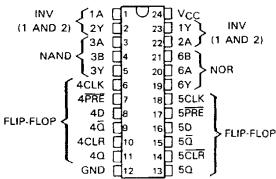
description

The SN54HC7074 and SN74HC7074 are each comprised of the following sections:

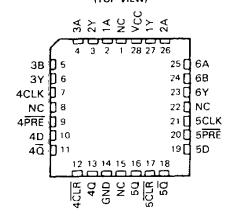
Two inverters

One 2-input NOR gate

One 2-input NAND gate


Two D-type flip-flops

They perform the Boolean functions shown under the respective function table.

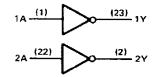

The D-type flip-flops are positive-edge-triggered and are functionally similar to the SN54HC74 and SN74HC74. A low level at the PRE or CLR inputs sets or resets the outputs regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

The SN54HC7074 is characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN74HC7074 is characterized for operation from $-40\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$

SN54HC7074 . . . JT PACKAGE SN74HC7074 . . . DW OR NT PACKAGE (TOP VIEW)

SN54HC7074 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

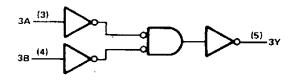

logic symbol†

1A (1)	1	(23) 1Y
2A (22)	1	(2) 2Y
3A (3)	<u>&</u>	(5)
38 (4)		(9) 3V
4PRE (7)	s	
4CLK (6)	> C1	(11) 4Q
4D (8)	1D	(9) 45
4CLR (10)	R	40
5PRE (17)	s	
5CLK (18)	> C2	(13) 5Q
5D (16)		/45\
1741 -	2D	(15) 5 <u>Q</u>
SCLH (20)	R	
6A (21)	>1	(19) 6Y
6B]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagrams (positive logic)

INVERTERS



FUNCTION TABLE (EACH INVERTER)

INPUT	OUTPUT
A	Y
I	L
L	н

positive logic: Y = A

2-INPUT NAND GATE

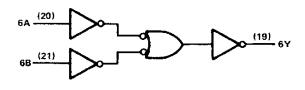

INPUTS OUTPUT A B Y H H L L X H X L H

FUNCTION TABLE

positive logic: $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$

Pin numbers shown are for DW, JT, and NT packages.

logic diagrams (positive logic)



FUNCTION TABLE (EACH D FLIP-FLOP)

	INF	OUT	PUTS		
PRE	CLR	CLK	D	Q	D
L	Н	Х	Х	H	L
н	L	х	Х	L	н
Ł	L	×	Х	н•	Н٩
н	н	t	Н	н	L
Н	Н	t	L	L	Н
н	Н	Ĺ	Х	α_{o}	\overline{a}^{α}

^{*}This configuration is nonstable; i.e., it will not persist when either PRE or CLR returns to the inactive (high) level.

2-INPUT NOR GATE

FUNCTION TABLE

INPL	JTS	OUTPUT
Α	В	Y
Н	Х	L
×	H ,	L
L	L	н

positive logic: $Y = \overline{A} + \overline{B}$ or $Y = \overline{A} \cdot \overline{B}$

Pin numbers shown are for DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range[†]

Supply voltage, VCC	′ V
Input clamp current, I _I K (V _I < 0 or V _I > V _{CC})	nΑ
Output clamp current, IOK (VO < 0 or VO > VCC	nΑ
Continuous output current, Io (Vo = 0 to Vcc)	nΑ
Continuous current through VCC or GND pins	nΑ
Lead temperature 1,6 mm (1/16 in) from case for 60 s: FK or JT package 300	°C
Lead temperature 1,6 mm (1/16 in) from case for 10 s: DW or NT package 260	°C
Storage temperature range65°C to 150	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54HC7074		SN74HC7074			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage		2	5	6	2	5	6	V
	V _{CC} = 2 V	1.5			1.5			
VIH High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
	V _{CC} ≈ 6 V	4.2			4.2			
	V _{CC} = 2 V	0		0.3	0		0.3	
VIL Low-level input voltage	V _{CC} = 4.5 V	0		0.9	0		0.9	V
	V _{CC} = 6 V	0		1.2	0		1.2	
V _I Input voltage		0	-	Vcc	0		Vcc	>
VO Output voltage		0		Vcc	0		VCC	V
	V _{CC} = 2 V	0		1000	0		1000	
t _t Input transition (rise and fall) time:	VCC = 4.5 V	0		500	0		500	ns
	V _{CC} = 6 V	0		400	0		400	
TA Operating free-air temperature		- 55		125	-40	-	85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		TA = 25°C			SN54HC7074		SN74HC7074		LIBUT
	TEST CONDITIONS	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	1.998		1.9		1.9		
	$V_I = V_{IH} \text{ or } V_{IL}, I_{OH} = -20 \mu\text{A}$	4.5 V	4.4	4.499		4.4		4.4		ı
Voн		6 ∨	5.9	5.999		5.9		5.9		٧
	VI = VIH or VIL, IOH = -4 mA	4.5 V	3.98	4.30		3.7		3.84		
	$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -5.2$ mA	6 V	5.48	5.80		5.2		5.34		
		2 V		0.002	0.1	Ī	0.1		0.1	
	V _I = V _{IH} or V _{IL} , I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1	}	0.1	
VOL		6 V	l	0.001	0.1		0.1	ł	0.1	V
	VI = VIH or VIL, IOL = 4 mA	4.5 V		0.17	0.26		0.4		0.33	
	VI = VIH or VIL, IOL = 5.2 mA	6 V		0.15	0.26		0.4	[0.33	
1	VI = VCC or 0	6 V		± 0.1	± 100		± 1000	:	± 1000	nΑ
lcc	V ₁ = V _{CC} or 0, I _O = 0	6 V			4		80		40	μΑ
c _i		2 to 6 V		3	10		10	1	10	ρF

timing requirements for each D-type flip-flop over recommended operating free-air temperature range (unless otherwise noted)

			TA - 25°C S		SN54H	IC7074	SN74H	IC7074	UNIT	
			VCC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	0	5.5	0	3.7	0	4.5	
f _{clack} Clock frequency		4.5 V	0	28	0	19	0	22	MHz	
			6 V	0	31	0	21	0	25	
	tw Pulse duration	CLK high	2 V	90		135		110		
		or	4.5 V	18		26		23		
		CLR low	6 V	16		24		20	l	ns
t _W	ruise duration	PRE low	2 V	100		150		125		
		or	4.5 V	20		30		25		
		CLR low	6 V	17		25		21		
			2 V	100		150		125		
		Data	4.5 V	20		30		25		
	Setup time	İ	6 V	17		25		21		
tsu	before CLK1	PRE high	2 V	25		38	,	31		ns
		or	4.5 V	5		8		6		
		PRE low	6 V	4		7		5		
			2 V	5		5		5		
th	Hold time, data after C	LK1	4.5 V	5		5		5		ns
			6 V	5		5		5		

switching characteristics for each D-type flip-flop over recommended operating free-air temperature range (unless otherwise noted), $C_L = 50$ pF (see Note 1)

PARAMETER	FROM	то	то	T,	TA - 25°C		SN54HC7074		SN74HC7074		
PANAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	*****		2 V	5.5	10	•	3.7		4.5		-,
f _{max}			4.5 V	28	50		19		22	ĺ	MHz
			6 V	31	60		21		25		
			2 V		45	175		263		219	
tpd	CLK	Q or Q	4.5 V		15	35	İ	53		44	ns
			6 V		13	30		45		38	
	PRE		2 V		45	230		345		288	
t _{pd}	or	Q or Q	4.5 V		15	46		69		58	ns
	CLR		6 V		13	39	ļ	59		49	

Cpd	Power dissipation capacitance per flip-flop	No load, TA = 25°C	40 pF typ

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

switching characteristics for gates and inverters over recommended operating free-air temperature range (unless otherwise noted), C_L = 50 pF (see Note 1)

PARAMETER	FROM	τo	V	TA = 25°C		SN54HC7074		SN74HC7074			
(INI	(INPUT)	(OUTPUT)	vcc	MiN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		24	90		135	l	115	
^t pd	A or B	Y	4.5 V		9	18		27		23	пs
	~~~ <u>~</u>		6 V		7	15		23		20	
			2 V		38	75		110		95	
tt		Y	4.5 V		8	15		22		19	ns
			6 V		6	13		19		16	

<u> </u>	Power dissipation capacitance per NAND or NOR gate	N	27 pF typ
⊃pd	Power dissipation capacitance per inverter	No load, T _A = 25°C	20 pF typ

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

#### TYPICAL APPLICATION DATA

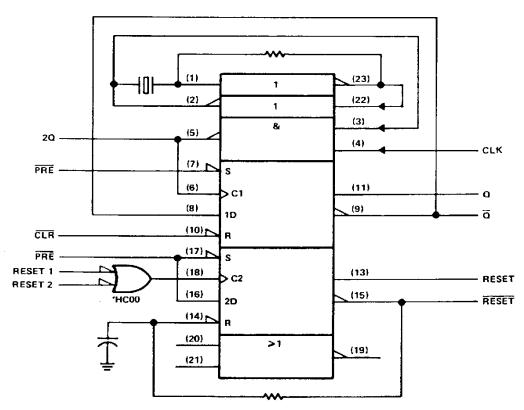



FIGURE 1. CLOCK AND RESET GENERATION FOR MICROPROCESSOR-BASED SYSTEM





v.ti.com 18-Sep-2008

#### PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74HC7074NT	OBSOLETE	PDIP	NT	24	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

#### **Products Amplifiers** amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications			
Audio	www.ti.com/audio		
Automotive	www.ti.com/automotive		
Broadband	www.ti.com/broadband		
Digital Control	www.ti.com/digitalcontrol		
Medical	www.ti.com/medical		
Military	www.ti.com/military		
Optical Networking	www.ti.com/opticalnetwork		
Security	www.ti.com/security		
Telephony	www.ti.com/telephony		
Video & Imaging	www.ti.com/video		
Wireless	www.ti.com/wireless		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated