

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC1944$

ADJUSTABLE PRECISION SHUNT REGULATORS

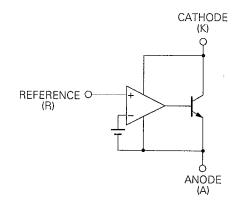
DESCRIPTION

 μ PC1944 are adjustable precision shunt regulators with guaranteed thermal stability. The output voltage can be set to any value between reference voltage (1.26 V) and 24 V by two external resistors. These ICs can apply to error amplifier of switching power supplys.

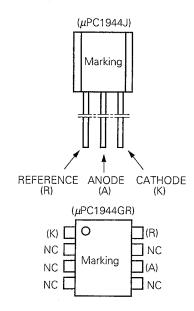
FEATURES

• Low voltage operation and High accuracy.

 $V_{REF} = 1.26 V \pm 2.4 \%$

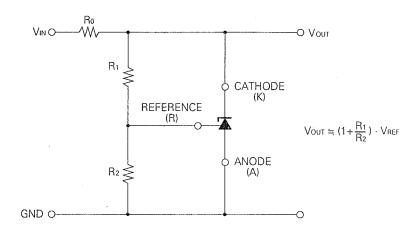

- Adjustable output voltage by two external resistors. $V_{REF} \le V_0 \le 24 \text{ V}$
- Pin compatible to μ PC1093.

ORDERING INFORMATION


Part Number	Package	Quality Grade	
μPC1944GR	8 Pin SOP (225 mil)	Standard	
μPC1944J	3 Pin SIP		

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

BLOCK DIAGRAM

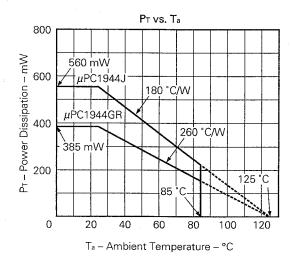

CONNECTION DIAGRAM

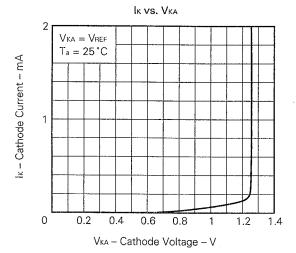
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

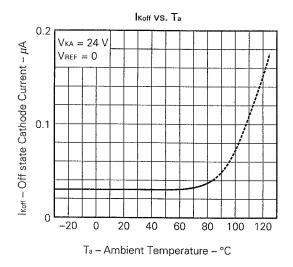
PARAMETER	SYMBOL	RATING	UNIT		
Cathode Voltage		Vka	25	V	
Cathode Current		ĺκ	50	. mA	
Cathode to Anode Reverse Current		-Ік	-30	mA	
Reference Voltage		Vref	7.0	V	
Reference Input Current		lref	50	μΑ	
Total Power Dissipation μ PC1944J μ PC1944Gf		_	560	mW	
		PT	385		
Operating Temperature Range		Topt	-30 to +85	°C	
Operating Junction Temperature Range		Topt (j)	-30 to +125	°C	
Storage Temperature Range		T _{stg}	-65 to +125	°C	

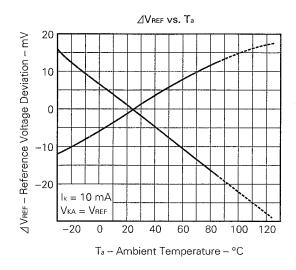
TEST AND APPLICATION CIRCUIT

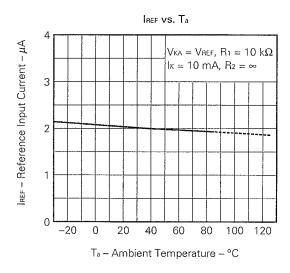
RECOMMENDED OPERATING CONDITIONS

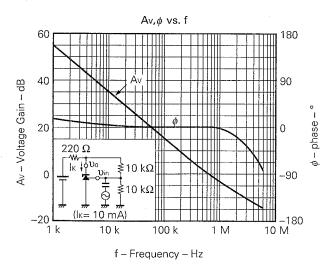

PARAMETER		SYMBOL	MIN,	TYP.	MAX.	UNIT
Cathode Voltage		Vka	VREF		24	V
Cathode Current		lκ	1.0	10	30	mA
D D:	μPC1944J	P _T			83	
Power Dissipation	μPC1944GR				57	mW
Operating Temperature		Topt	-30	,	+85	°C
Operating Junction Temperature Range		Topt (j)	-30		+100	°C

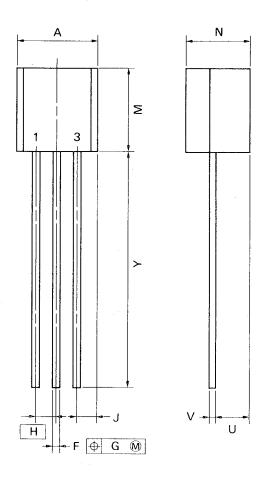



ELECTRICAL CHARACTERISTICS (Ta = 25 °C, lk = 10 mA)


PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Reference Voltage	Vref	1.23	1.26	1.29	٧	Vka = Vref
Reference Voltage Deviation Over Temperature	⊿ VREF		5	±30	mV	0 °C ≦ Ta ≦ 70 °C, VKA = VREF
Reference Voltage Deviation Over	⊿Vref/⊿Vka			2.7	1404	I Vref I ≦ VKA ≦ 5V
Cathode Voltage	ZI VREF/ZI VKA			2.0	mV/V	5 V ≦ VKA ≦ 24 V
Reference Input Current	IREF		1.9	4.0	μΑ	VKA = VREF,
Therefores input current	INCL		1.5	4.0		$R_1 = 10 \text{ k}\Omega$, $R_2 = \infty$
Reference Input Current Deviation	⊿ IREF			4.0		0 °C ≦ Ta ≦ 70 °C, VKA = VREF,
Over Temperature	ZI IREF		0.3	1.2	μΑ	$R_1 = 10 \text{ k}\Omega$, $R_2 = \infty$
Minimum Cathode Current	1Kmin		0.15	1.0	mA	VKA = VREF, A VREF = 2 %
Off-state Cathode Current	lkoff			1.0	μΑ	VKA = 24 V, VREF = 0 V
Dynamic Impedance	I ZKA I		0.1	0.5	Ω	VKA = VREF, f ≦ 1 kHz, 1 mA ≦ lk ≦ 30 mA


TYPICAL CHARACTERISTICS (Ta = 25 °C)



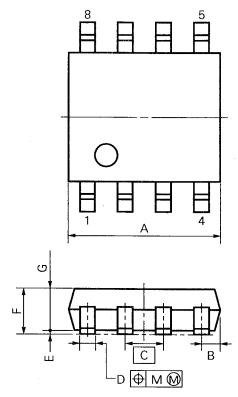


PACKAGE DIMENSIONS (in millimeters)

 μ PC1944J

3PIN PLASTIC SIP (TO-92)

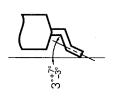
NOTE

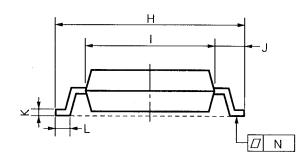

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P3J-127B

ITEM	MILLIMETERS	INCHES
Α	5.2 MAX.	0.205 MAX.
F	0.5 -0.1	0.02 - 0.012
G	0.12	0.005
Н	1.27	0.05
J	1.33 MAX.	0.053 MAX.
М	5.5 MAX.	0.217 MAX.
N	4.2 MAX.	0.166 MAX.
U	2.8 MAX.	0.111 MAX.
٧	0.5 ^{±0.1}	0.02 - 8.885
Y	15.0 ^{±0.7}	0.591 + 8.828

 μ PC1944GR


8 PIN PLASTIC SOP (225 mil)



NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

detail of lead end

S8GM-50-225B-3

ITEM	MILLIMETERS	INCHES
Α	5.37 MAX.	0.212 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	0.016+0.004
E	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071MAX.
G	1.49	0.059
Н	6.5±0.3	0.256±0.012
-	4.4	0.173
J	1.1	0.043
Κ	0.15 ^{+0.10} _{-0.05}	$0.006^{+0.004}_{-0.002}$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.12	0.005
N	0.10	0.004

Note: If the capacitance is connected between Cathode to Anode terminal, it should be following value to avoid oscillation.

CKA \leq 470 pF or CKA \geq 2.2 μ F

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "Semiconductor Device Mounting Manual" (IEI-1207).

μPC1944G

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature : 235 °C or below, Reflow time : 30 seconds or below (210 °C or higher), Number of reflow process : 1, Exposure limit*: None	IR35-00-1
Wave soldering	Solder temperature : 260 °C or below, Flow time : 10 seconds or below, Number of flow process : 1, Exposure limit*: None	WS60-00-1

^{*:} Exposure limit before soldering after dry-pack package is opened.

Storage conditions : 25 $^{\circ}\text{C}$ and relative humidity at 65 % or less.

Note: Do not apply more than a single process at once, except for "Partial heating method".

TYPES OF THROUGH HOLE MOUNT DEVICE

μPC1944J

Soldering process	Soldering conditions	Symbol
Wave soldering	Solder temperature : 260 °C or below, Flow time : 10 seconds or below	

REFERENCE

Document name	Document No.
Quality control of NEC semiconductor devices	TEM-1202
Quality control guide of semiconductor devices	MEI-1202
Assembly manual of semiconductor devices	IEI-1207
NEC semiconductor device reliability/quality control system	IEI-1212

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6