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1.0 Introduction

1.1

Overview
The VRC4373TM system controller is a software-configurable chip that directly interfaces 
the VR4300TM CPU and PCI bus without external logic or buffering, and also interfaces 
memory (SDRAM, EDO, fast-page DRAM, and flash boot ROM) with minimal buffer-
ing. From the viewpoint of the VR4300 CPU, the VRC4373 acts as a memory controller, 
DMA controller, and PCI bridge. From the viewpoint of PCI agents, the VRC4373 acts 
as either a PCI bus master or a PCI bus target. Alternatively, the VRC4373 may be 
located on a PCI bus add-on board.

1.2

Features
q CPU Interface

• Direct connection to the 66MHz VR4300 CPU bus

• 3.3V I/O

• Support for all VR4300 bus cycles

• Little-endian or big-endian byte order

q Memory Interface

• Support for boot ROM, base memory, and up to four SIMMTM (DIMM) ranges 

• Programmable address ranges for base memory and SIMM memory 

• 66 MHz memory bus 

• Base memory range: SDRAM and EDO DRAM

• SIMM memory range: SDRAM, EDO and fast-page DRAM, and flash ROM

• Several speed grades supported within each memory range

• Bank-interleaved or non-bank-interleaved SIMM memory ranges

• On-chip bank-interleaving buffers

• Open DRAM page maintained within base memory

• 8-word (32-byte) write FIFO (CPU-to-memory)

• 2-word (8-byte) prefetch FIFO (memory-to-CPU or memory-to-PCI)

• On-chip DRAM and SDRAM refresh generation

• Up to 16 MB of write-protectable boot ROM

• Boot ROM address and data signals multiplexed on DRAM data signals

• 3.3V inputs; 5V-tolerant outputs

q PCI Interface

• Master and target capability

• Host bridge and add-on board modes

• PCI bus arbiter

• 4-word (16-byte) bidirectional PCI master FIFO (CPU = PCI bus master)
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• 8-word (32-byte) bidirectional PCI target FIFO (memory is PCI bus target)

• 33 MHz PCI bus clock rate

• 133 MB/sec burst transfers

• Interrupt support for add-on board mode

• 3.3V PCI-compliant inputs; 5V-tolerant outputs

q DMA Controller

• CPU-initiated block transfers between memory and PCI bus

• 8-word (32-byte) bidirectional DMA FIFO

• Two sets of DMA control registers for chained transfers (one set is 
programmed while data is transferred on the other)

• Bidirectional unaligned transfers

• Transfers at maximum PCI bandwidth of 133 Mb/s

1.3

Terminology
In this document:

q Word means 4 bytes. This definition of word differs from the definition in the PCI 
Local Bus Specification, where a word is 2 bytes. 

q B means byte.

q b means bit.

q Memory means the local memory attached to the VRC4373 controller.

q SIMM means Single or Dual In-line Memory Module (SIMM or DIMM), unless 
explicitly stated otherwise.

q Module mean a set of chips, as in a SIMM or DIMM.

q SDRAM means synchronous DRAM

1.4

Reference 
Documents

The following documents form a part of this data sheet. Unless otherwise specified, the 
latest version of each document applies.

q “MIPS® R4300 Preliminary RISC Processor Specification Revision 2.2” (available 
from the MIPS Group, a division of Silicon Graphics, Inc.)

q “PCI Local Bus Specification” Revision 2.1 and “PCI System Design Guide” 
Revision 1.0 (available from the Peripheral Component Interconnect Special 
Interest Group)

q NEC VR4300TM Microprocessor Data Sheet (doc. no. U10116EJ3V0DS00)



3

1.5

System Block 
Diagram

Figure 1 shows the controller used as a host bridge in a typical system. Alternatively, 
the controller can be located on a PCI bus add-on board. 

Figure 1:   System Block Diagram 

Note: F244 or F245 buffers may be needed on the MuxAd bus and, for DIMM modules, on certain 
chip select signals.
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2.0 Signal Summary 
The controller has 208 signals and 51 power/ground pins, for a total of 251 pins. Table 
3 through Table 4 summarize the signal functions. 

Table 1:  CPU Interface Signals

Signal I/O
Reset
Value

Pullup/
Pulldown

Max. AC
Load (pF)

Max. DC
Drive (mA)

Description

EOK# O High 20 24 External ready; signifies that the controller is ca-
pable of accepting a processor request

EValid# O High 20 6 External agent valid. Indicates that the controller 
is driving valid information on the SysAD and Sy-
sCmd buses

Int# O High 30 6 Interrupt request

MasterClock O Toggle 20 24 66 MHz MasterClock to CPU

NMI# O High 20 12 Non-maskable interrupt; asserted when a PCI 
device asserts SERR#

PValid# I Processor valid; signifies that the VR4300 is driv-
ing valid information on the SysAD and SysCmd 
buses

SysAD[31:0] I/O Hi-Z 20 6 System address/data bus

SysCmd[4:0] I/O Hi-Z 20 6 System command/data ID bus

Table 2:  Memory Interface Signals

Signal I/O
Reset
Value

Pullup/
Pulldown

Max. AC
Load (pF)

Max. DC
Drive (mA)

Description

BOE# O High 50 24 Base memory output-enable

BRAS# O High 50 24 Base memory row address strobe

BROMCS# O High 30 12 Boot ROM chip select

BWE# O High 50 24 Base memory write enable

MCASa[3:0]# O High 75 24 Column address strobe, even addresses

MCASb[3:0]# O High 75 24 Column address strobe, odd addresses

MRAS[3:0]# O High 75 24 SIMM memory row address strobes

MDa[31:0] I/O High 70 12 Memory data (even), boot ROM address

MDb[31:0] I/O High 70 12 Memory data (odd), boot ROM data

MuxAd[9:0] I/O Hi-Z 50K down 75 24 Multiplexed row/column address

Mux[10] I/O Hi-Z 75 24 Multiplexed row/column address; endian select

MuxAd[13:11] O Hi-Z 75 24 Multiplexed row/column address

MWE# O High 30 24 Boot ROM and SIMM write enable

SDCAS# O High 80 24 SDRAM column address strobe

SDRAS# O High 80 24 SDRAM row address strobe

SDCKE[3:0] O High 70 24 SDRAM clock enable

SDCLK[3:0] O High 50 24 66 MHz SDRAM clock

SDCS[1:0]# O High 50 24 SDRAM command select
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a. Compatible with PCI specification

Table 3:  PCI Interface Signals

Signal I/O
Reset
Value

Pullup/
Pulldown

Max. AC
Load (pF)

Max. DC
Drive (mA)

Description

AD[31:0] I/O Hi-Z 110 PCI a PCI A/D[31:0], multiplexed address and data bus

CBE[3:0]# I/O Hi-Z 110 PCI PCI C/BE[3:0]#, bus command and byte-enables

CLK[3:0] O Toggle 50 PCI PCI CLK, 33 MHz 

DEVSEL# I/O Hi-Z 110 PCI PCI DEVSEL#, device select

FRAME# I/O Hi-Z 110 PCI PCI FRAME#, cycle frame

GNT[0]# I/O High 10 PCI PCI GNT#, bus grant

GNT[3:1]# O High 10 PCI PCI GNT#, bus grant

IDSEL I PCI IDSEL, initialization device select

INTA# I/O 10 PCI PCI INTA#, interrupt A

IRDY# I/O Hi-Z 110 PCI PCI IRDY#, initiator ready

LOCK# I/O Hi-Z 10 PCI PCI LOCK#, lock atomic operation

PAR I/O Hi-Z 110 PCI PCI PAR, parity of A/D[31:0] and C/BE[3:0]#

PERR# I/O Hi-Z 10 PCI PCI PERR#, parity error

REQ[0]# I/O 10 PCI PCI REQ#, bus request

REQ[3:1]# I PCI REQ#, bus request

RST# I PCI RST#, reset

SERR# I/O Hi-Z 10 PCI PCI SERR#, system error

STOP# I/O Hi-Z 110 PCI PCI STOP#, stop request from target

TRDY# I/O Hi-Z 110 PCI PCI TRDY#, target ready

Table 4:  Utility Signals

Signal I/O
Reset
Value

Pullup/
Pulldown

Max. AC
Load (pF)

Max. DC
Drive (mA)

Description

REFCLK I Toggle 66 MHz system reference clock
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3.0 Register, Resource, and Implementation

3.1

Register Summary
Table 5 summarizes the controller’s register set (base address 0F00_0000 in system 
memory). Accesses above offset 0x1FF return 0 with the data-error bit set on 
SysCMD[0], update the controller’s bus error status register (Section 8.1.1), and cause 
an interrupt (Int#), if enabled. 

Table 5: Register Summary

Offset from Base 
0x0F00_0000

Register Name
Size 
(bytes)

CPU-Bus 
R/W

PCI bus (R/W) Reference

0x0 Base memory control register 4 R/W Not accessible Section 5.6.1 on page 18

0x4 SIMM memory control register 1 4 R/W Not accessible Section 5.7.1 on page 25

0x8 SIMM memory control register 2 4 R/W Not accessible Section 5.7.1 on page 25

0xC SIMM memory control register 3 4 R/W Not accessible Section 5.7.1 on page 25

0x10 SIMM memory control register 4 4 R/W Not accessible Section 5.7.1 on page 25

0x14 PCI master address window register 1 4 R/W Not accessible Section 6.3.1 on page 35

0x18 PCI master address window register 2 4 R/W Not accessible Section 6.3.1 on page 35

0x1C PCI target address window register 1 4 R/W Not accessible Section 6.4.1 on page 37

0x20 PCI target address window register 2 4 R/W Not accessible Section 6.4.1 on page 37

0x24 PCI master I/O window register 4 R/W Not accessible Section 6.3.1 on page 35

0x28 PCI configuration data register 4 R/W Not accessible Section 6.5 on page 38

0x2C PCI configuration address register 4 R/W Not accessible Section 6.5 on page 38

0x30 PCI mailbox register 1 4 R/W R/W Section 6.11 on page 48

0x34 PCI mailbox register 2 4 R/W R/W Section 6.11 on page 48

0x38 DMA control register 1 4 R/W Not accessible

0x3C DMA memory address register 1 4 R/W Not accessible

0x40 DMA PCI address register 1 4 R/W Not accessible

0x44 DMA control register 2 4 R/W Not accessible

0x48 DMA memory address register 2 4 R/W Not accessible

0x4C DMA PCI address register 2 4 R/W Not accessible

0x50 Bus error status register 4 R Not accessible Section 8.1.1 on page 56

0x54 Interrupt control and status register 4 R/W Not accessible Section 8.1.2 on page 57

0x58 DRAM refresh counter register 4 R/W Not accessible Section 5.8.1 on page 30

0x5C Boot ROM write-protect register 4 R/W Not accessible Section 5.5.1.2 on page 17

0x60 PCI exclusive access register 4 R/W Not accessible Section 6.12.1 on page 49

0x64 DMA words remaining register 4 R Not accessible

0x68 DMA current memory address register 4 R Not accessible

0x6C DMA current PCI address register 4 R Not accessible

0x70 PCI retry counter 4 R Not accessible Section 6.8 on page 47

0x74 PCI enable register 4 R/W Not accessible Section 6.10 on page 47

0x78 Power-on memory initialization register 4 R/W Not accessible Section 5.10.1 on page 31

0x7C:0xFF Reserved Not accessible Not accessible

0x100:0x1FF PCI configuration space registers 
(host bridge mode)

1, 2, 4 R/W Not accessible Section 6.5 on page 38

0x100:0x1FF PCI configuration space registers (add-on board 
mode, where the controller is located on a PCI 
bus board rather than on the mother board) 

1, 2, 4 Not accessible R/W Section 6.7 on page 44
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3.2

Resource 
Accessibility

Table 6 summarizes the accessibility, from the CPU and from PCI bus masters, of the 
controller’s internal registers, memory ranges, and PCI bus resources. 

a. Because the boot ROM does not support burst transfers, it cannot be accessed from the PCI bus. The PCI interface 
issues cache-line reads to the target inside the controller.

b. Alignment and burst length as defined by the VR4300 CPU.
c. Any size burst length, any alignment. Burst may be disconnected by controller.
d. The controller accepts bursts of words to the PCI mailboxes. However, the controller performs a target disconnect with-

out data after each data transfer.
e. Any size access less than or equal to one word, aligned as defined by the VR4300 CPU.

3.3

Implementation 
Summary

To create a system using the VRC4373 system controller:

• Configure the hardware using the information provided throughout this data sheet. 
• Power-up and initialize the memory, following the steps in Section 5.10 on page 

31. 
• Initialize the PCI bus interface, using the configuration register information 

provided in Section 6.0 on page 34. 

Table 6: Resources Accessible Through The VRC4373 System Controller

Resource Accessible from CPU Accessible from PCI Bus Reference

CPU — No Section 4.0 on page 8

Controller’s internal registers 
(except PCI mailboxes)

Word No Section 6.0, Section 5.0, Sec-
tion 7.0, Section 8.0

Boot ROM Byte writes 
Word, half-word, or byte reads

No a Section 5.5 on page 15

Base memory Any CPU burst b Any PCI burst c Section 5.6 on page 18

SIMM memory Any CPU burst a Any PCI burst b Section 5.7 on page 25

PCI mailboxes Word Word d Section 6.11 on page 48

PCI configuration space registers Word, half-word, or byte e Word, half-word, or byte in add-
on board mode only

Section 6.5 on page 38, Sec-
tion 6.7 on page 44

PCI memory space Any CPU burst of 4 words or less a No PCI Local Bus Specification

PCI I/O space Any CPU burst of 4 words or less a No PCI Local Bus Specification

PCI configuration space Word, half-word, or byte e Word, half-word, or byte PCI Local Bus Specification
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4.0 CPU Interface
The controller interfaces directly to the VR4300 CPU, in full compliance with the “MIPS 
R4300 Preliminary RISC Processor Specification,” Revision 2.2. The connection is via 
the CPU’s 66 MHz SysAD bus using 3.3-volt I/O. All of the CPU’s SysAD bus opera-
tions are supported. 

4.1

Endian 
Configuration

The BE bit in the VR4300 CPU’s configuration register specifies the CPU’s byte order-
ing at reset. BE=0 configures little-endian order; BE=1 configures big-endian order.

The VRC4373 controller’s CPU interface supports either big- or little-endian byte order-
ing on the SysAd bus. The order depends on the state of the MuxAd[11] signal at reset, 
as described in Section 10.0. All of the controller’s other interfaces operate only in little-
endian mode. The software implications of this, and some related PCI device exam-
ples, are described in Section 11.0.

4.2

Data Rate Control
The controller-to-CPU data rate is determined by the EValidn signal. The CPU-to-con-
troller data rate is programmable in the EP field (bits 27:24) of the CPU’s configuration 
register. Although the CPU supports both D and Dxx data rates, the controller only sup-
ports the D data rate.

4.3

Address Decoding
The controller latches the address on the SysAD bus. It then decodes the address and 
SysCmd signals to determine the transaction type. Ten address ranges can be 
decoded: 

• One range for boot ROM
• One range for the controller’s internal configuration registers
• One range for base memory
• Four ranges for SIMM/DIMM memory
• Two ranges for the PCI master address windows
• One range for the PCI I/O address window

Boot ROM is mapped according to its size, as specified in Table 13 on page 16. The 
controller’s internal registers are fixed at base address 0x0F00_0000, to allow the CPU 
to access them during boot, before they have been configured. All other decode 
ranges are programmable.

4.4

Trace Requirements
All traces between the CPU and the controller must be limited to 3 inches or less. TCLK 
is not used. See Section 9.0 on page 60 for details on clocking.
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5.0 Memory Interface
The CPU accesses memory attached to the controller in the normal way, by address-
ing the system memory space. For large block transfers, the CPU can also initiate 
DMA transfers between memory and the PCI (either direction), as described in Section 
7.0. PCI bus masters gain access the controller’s memory through the PCI target 
address windows, as described in Section 6.4. 

The controller’s memory interface has the following internal FIFOs that support trans-
fers between memory and the various sources and destinations:

• 8-word (32-byte) write FIFO (CPU-to-memory)
• 2-word (8-byte) prefetch FIFO (memory-to-CPU or memory-to-PCI)
• 8-word (32-byte) bidirectional DMA FIFO (PCI-to-memory or memory-to-PCI)

5.1

Memory Regions 
and Devices

The controller connects directly to memory and manages the addresses, data and con-
trol signals for the following address ranges. 

• Two boot ROM ranges, standard and fault-recovery
• One base memory range (programmable)
• Four SIMM memory ranges (programmable). DIMM modules can also be used.

The following types of memory modules can be used:

• Flash: can be used in boot ROM and/or SIMM memory ranges
• EDO DRAM: for base or SIMM memory
• Fast-page DRAM: for SIMM memory
• Synchronous DRAM (SDRAM): 

• 16 Mb for base or SIMM memory (NEC part numbers µPD4516421 and 
µPD4516821)

• 64 Mb for SIMM memory (NEC part numbers µPD4564421 and µPD4564821)

Boot ROM can be populated only with 85-ns flash chips. In addition to its standard boot 
address range, boot ROM can also be mapped to a fault-recovery range in SIMM 
Memory slot 4, if that slot is populated with 85-ns flash chips. Prior to accessing boot 
ROM, software must configure this address range, as described in Section 5.5. 

Base memory can be populated with 4Mb EDO or NEC 16 Mb SDRAM chips. If 
SDRAM is used for base memory, it cannot be bank interleaved. Prior to accessing 
base memory, software must configure this address range, as described in Section 
5.6. 

The four SIMM memory ranges can be bank-interleaved, single-sided (SIMM) or dou-
ble-sided (DIMM), page-mode or non-page mode, and populated with any of the sup-
ported memory types. 100-pin DIMMs are the only DIMM package supported. Prior to 
accessing SIMM memory, software must configure this address range, as described in 
Section 5.7. 

Figure 2 shows a block diagram of controller-to-memory connections for DRAM. Figure 
4 on page 23 and Figure 5 on page 29 shows examples of controller-to-memory con-
nections for SDRAM. 
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Figure 2:   Memory Block Diagram 
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5.2

Address 
Multiplexing Modes

The controller supports five address multiplexing modes (mux modes) in the base 
memory and SIMM memory ranges. Table 7 shows these modes and the row address 
x column address configurations they support.

Configuration of the address-multiplexing modes is done in the base memory control 
register (Section 5.6.1) and SIMM memory control registers (Section 5.7.1). The selec-
tion of mode determines which system address bits are output from the controller on 
the memory-interface MuxAd bus during row and column addressing. 

Table 8 shows the MuxAd-to-SysAD for DRAM and flash memory. When DRAM or 
flash is used for base memory, either the 12x8 or 10x10 configurations may be used. 

Table 9 shows the MuxAd-to-SysAD mapping for SDRAM. when SDRAM is used in 
base memory, mux mode 3 must be used, and only 16Mb SDRAM devices can be 
used. (64 Mb SDRAM devices can only be used in SIMM memory.)

Table 7: Address-Multiplexing Modes

Address Multiplexing Mode Row-Address X Column-Address Configurations

Mux mode 0: 9x9

Mux mode 1: 10x9, 10x10

Mux mode 2: 11x9, 11x10, 11x11

Mux mode 3: 12x9, 12x10, 12x11, 12x12

Mux mode 4: 14x11 (64 Mb SDRAM only)

Any mux mode: 12x8, 11x8, 10x8

Table 8: MuxAd-To-SysAd Address Mapping for DRAM and Flash ROM

MuxAd
Signals

Bank-Interleaved SysAD Mapping Non-Bank-Interleaved SysAD Mapping

Row

Column

Row

Column

Mode 0
(x9)

Mode 1
(x10)

Mode 2
(x11)

Mode 3
(x12)

Mode 0
(x9)

Mode 1
(x10)

Mode 2
(x11)

Mode 3
(x12)

0 11 3 3 3 3 11 3 3 3 3

1 12 4 4 4 4 12 4 4 4 4

2 13 5 5 5 5 13 5 5 5 5

3 14 6 6 6 6 14 6 6 6 6

4 15 7 7 7 7 15 7 7 7 7

5 16 8 8 8 8 16 8 8 8 8

6 17 9 9 9 9 17 9 9 9 9

7 18 10 10 10 10 10 2 2 2 2

8 19 20 21 22 23 18 19 20 21 22

9 20 21 22 23 24 19 20 21 22 23

10 21 22 23 24 25 20 21 22 23 24

11 22 23 24 25 26 21 22 23 24 25
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a. 16 Mb SDRAM can be used in either the base memory or SIMM memory ranges. 
Base memory must be non-bank interleaved, non-page mode.

b. 64 Mb SDRAM is supported only in the SIMM memory regions, in the bank-inter-
leaved mode. 64 Mb SDRAM cannot be used in the base memory range. 

Table 9: MuxAd-To-SysAd Address Mapping for SDRAM

MuxAd
Signals

Bank-Interleaved SysAD Mapping Non-Bank-Interleaved SysAD Mapping

Row

Column

Row

Column

Mode 3 a

(16 Mb SDRAM)
Mode 4 b

(64 Mb SDRAM)
Mode 3
(16 Mb SDRAM)

Mode 4 a

(64 Mb SDRAM)

0 11 3 3 11 2 2

1 12 4 4 12 3 3

2 13 5 5 13 4 4

3 14 6 6 14 6 6

4 15 7 7 15 7 7

5 16 8 8 16 8 8

6 17 9 9 17 9 9

7 18 10 10 10 5 5

8 19 23 25 18 22 24

9 20 24 26 19 23 25

10 21 Hardwired to 0 Hardwired to 0 20 Hardwired to 0 Hardwired to 0

11 22 22 22 21 21 21

12 23 Not used Hardwired to 0 22 Not used Hardwired to 0

13 24 Not used Hardwired to 0 23 Not used Hardwired to 0
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5.3

Memory 
Performance

The speed of memory accesses is determined by memory type, speed, and bank inter-
leaving. Table 10 lists examples of the number of 66 MHz memory bus clocks required 
for each transfer of an 8-word (32-byte) CPU instruction cache line fill. The first number 
in the “SysAD CPU Clocks (66 MHz)” column is for the first word; the remaining num-
bers are for the subsequent words. Only the most common combinations are shown. 

a. Read performance is calculated by counting the rising edge for TCLK, where the read command 
is issued by the CPU. Because the CPU issues write data with no wait-states once the write 
command is issued, the numbers in the table represent the rate at which data is written to mem-
ory. The sum of the numbers represents the number of cycles between when the write operation 
was issued and when the next CPU memory operation can begin.

b. N/A means not applicable.
c. After a one- or two-word read starting at offset 0, an instruction-cache line fill that is sequential to 

the previous one- or two-word read actually has a page-hit wait-state pattern, not sequential.
d. Writes to bank-interleaved memory are performed as 8-byte (double-word) quantities. Thus, the 

time to write a double-word to bank-interleaved memory only specifies four wait-state numbers. 

Table 10: Examples of Memory Performance a

Memory Type
Bank 
Interleaved

Page 
Mode

Page 
Hit

R/W
Sequential 
Addresses b

Base 
Memory 
or SIMM

SysAD CPU 
Clocks (66MHz)

SDRAM, 10 ns No No No R No Base 9-1-1-1-1-1-1-1

SDRAM, 10 ns No No No W No Base 7-1-1-1-1-1-1-1

SDRAM, 10 ns No No No R No SIMM 11-1-3-1-3-1-3-1

SDRAM, 10 ns No No No W No SIMM 9-4-4-4-4-4-4-4

EDO, 60 ns No No No R Base 9-2-2-2-2-2-2-2

EDO, 60 ns Yes No No R Base 9-1-1-1-1-1-1-1

EDO, 60 ns Yes Yes No R Base 13-1-1-1-1-1-1-1

EDO, 60 ns Yes Yes Yes R Yes Base 3-1-2-1-1-1-1-1 c

EDO, 60 ns Yes Yes Yes R No Base 7-1-1-1-1-1-1-1

EDO, 60 ns No No No W N/A Base 7-2-2-2-2-2-2-2

EDO, 60 ns Yes No No W Base 7-2-2-2 d

EDO, 60 ns Yes Yes No W Base 11-2-2-2 d

EDO, 60 ns Yes Yes Yes W Base 5-2-2-2 d

EDO, 60 ns Yes No No R SIMM 11-1-3-1-3-1-3-1

EDO, 60 ns No No No R SIMM 11-4-4-4-4-4-4-4

EDO, 60 ns Yes No No W SIMM 9-4-4-4 d

EDO, 60 ns No No No W SIMM 9-4-4-4-4-4-4-4

Fast-page, 70 ns Yes No No R SIMM 11-1-4-1-4-1-4-1

Fast-page, 70 ns No No No R SIMM 11-5-5-5-5-5-5-5

Fast-page, 70 ns Yes No No W SIMM 10-5-5-5-d

Fast-page, 70 ns No No No W SIMM 10-5-5-5-5-5-5-5

Flash, 85 ns Yes No No R SIMM 13-1-6-1-6-1-6-1

Flash 85 ns No No No R SIMM 13-7-7-7-7-7-7-7

Flash 85 ns Yes No No W SIMM 11-6-6-6 d

Flash 85 ns No No No W SIMM 11-6-6-6-6-6-6-6
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5.4

Placement, 
Loading, and 
Example Delays

Figure 3 shows the physical placement recommendations for mother-board chips. 
Table 11 shows minimum and maximum AC loadings for the memory interface signals. 
Table 12 shows example trace delays between memory and the controller.

Figure 3:   Memory Placement 
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Signal
Min
(pF)

Max
(pF)

Description
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MCASb[3:0]# 20 75 Column address strobe, odd addresses

MWE# 10 30 Boot ROM and SIMM write enable
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BROMCS# 10 30 Boot ROM chip select
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a. MuxAd[9:0] needs a pull down of 50K Ohm externally for the gate-array version.

a. From controller to SIMM DRAM.
b. To accommodate SIMM loading, F244 or F245 buffers must be used on these signals. 

5.5

Boot ROM
Boot ROM can be populated only with 85-ns flash chips, and it must have an access 
time of 200 ns or less. The controller supports 8-bit boot ROM at locations 
0x1F00_0000 through 0x1FFF_FFFF in the system memory space. In addition to this 
standard boot-address range, boot ROM can also be mapped to a fault-recovery range 
in SIMM memory slot 4, if that slot is populated with 85-ns flash chips. The boot ROM 
does not support CPU cache operations, and it is not accessible from the PCI bus. 

During boot ROM accesses, MDa[23:0] provide a 24-bit byte address, allowing up to 
16 MB of boot ROM to be installed. The size of the boot ROM, and the boot base 
address, are configured at the rising edge of RST# by the state of MuxAd[0:2], as 
shown in Table 13. 

Writes to Boot ROM must be in byte sizes. Read cycles may be in word, half-word or 
byte sizes. During read operation, the controller assembles four consecutive byte read 
cycles into words. The 8-bit boot ROM data is connected to MDb[7:0]. 

SDCKE[3:0] 10 70 SDRAM clock enable

SDCS[1:0]# 10 50 SDRAM command select

SDCAS# 20 80 SDRAM column address strobe

SDRAS# 20 80 SDRAM row address strobe

Table 11:  Memory-Signal AC Loading (Continued)

Signal
Min
(pF)

Max
(pF)

Description

Table 12: Example SIMM DRAM Delays

Signal Source Destination
Delay Subtotal 
(250ps/inch)

RC Delay 
(2 x R x C) 

Total 
Delay a

MCASa[3:0]# Controller SIMM DRAM 1.8 ns 2 x 33 x 100pF = 6.6 ns 8.4 ns

MCASb[3:0]# Controller SIMM DRAM 1.8 ns 2 x 33 x 100pF = 6.6 ns 8.4 ns

MuxAd[11:0] b Controller
Buffer input
Buffer output

Buffer
Buffer output (250 pF) 
SIMM DRAM

0.5 ns
14.0 ns
2.0 ns 2 x 10 x 250pF = 5.0 ns

21.5 ns

MDa[31:0] Controller SIMM DRAM 2.0 ns 2.0 ns

MDb[31:0] Controller SIMM DRAM 2.0 ns 2.0 ns

MDa[31:0] SIMM DRAM Controller 2.0 ns 2.0 ns

MDb[31:0] SIMM DRAM Controller 2.0 ns 2.0 ns

MRAS# Controller SIMM DRAM 2.2 ns 2 x 33 x 180pF = 12 ns 14.2 ns

MWE# b Controller
Buffer input
Buffer output

Buffer
Buffer output (130 pF) 
SIMM DRAM

1.3 ns
11.0 ns
2.0 ns 2 x 10 x 130pF = 2.6 ns

16.9 ns
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The controller asserts the boot ROM chip select (BROMCS#) in the address range 
0x1F00_0000 through 0x1FFF_FFFF. When write cycles are performed to the boot 
ROM space, the controller asserts MWE# in conjunction with BROMCS#. When read 
cycles are performed, the controller asserts BWE# in conjunction with BROMCS#. 

If the CPU attempts to accessboot ROM addresses outside the defined size of the boot 
ROM, the controller returns 0 with the data error bit set on SysCMD[0]. In addition, the 
controller’s bus error status register (Section 8.1.1) is updated and an interrupt is 
asserted on the Int# signal, if the interrupt is enabled in the interrupt control and status 
register (Section 8.1.2). 

5.5.1

Boot ROM Write 
Protection

Boot ROM can be protected in hardware and/or software. Hardware protection is 
implemented at boot-time. Software protection is implemented by programming the 
boot ROM write-protect register (Section 5.5.1.2). 

5.5.1.1

Hardware Versus 
Software Protection

Hardware can implement write protection on up to 960 KB of the boot ROM, in blocks 
of 64 KB at boot time. On the rising edge of reset (RST#), four bits of the MuxAd bus, 
MuxAd[6:3], are sampled and used to determine the number of 64 KB blocks to be pro-
tected. Up to 15 blocks can be protected; all 0000 indicates one 64 KB block, 0001 indi-
cates two blocks, and so on. A value of 1111 indicates that no blocks are to be 
protected. 

For boot ROM sizes less than or equal to 4 MB, the base address of the ROM and the 
base address for hardware protection are both 0x1FC0_0000. For boot ROM sizes of 
8 MB and 16 MB, the base addresses of ROM are 0x1F80_0000 and 0x1F00_0000, 
respectively, and the base address for hardware protection is 0x1FC0_0000, as shown 
in Table 13. 

Software can also implement write protection by writing to the boot ROM write-protect 
register. The 6 least significant bits of this register provide additional protection for up 
to 63 64-KB blocks. The base address for software protection is 0x1FC0_0000 and the 
protected range consists of the combination of software-implemented protection and 
hardware-implemented protection. Software can override or re-enable hardware write 
protection as described in the boot ROM write-protect register’s key field (Section 
5.5.1.2, immediately below). 

Table 13: boot ROM Size Configuration at Reset

MuxAd[2:0] Boot ROM Size Address Range

000 1 MB 0x1FC0_0000 through 0x1FCF_FFFF

001 0.5 MB 0x1FC0_0000 through 0x1FC7_FFFF

010 2 MB 0x1FC0_0000 through 0x1FDF_FFFF

011 4 MB 0x1FC0_0000 through 0x1FFF_FFFF

100 8 MB 0x1F80_0000 through 0x1FFF_FFFF

101 through 111 16 MB 0x1F00_0000 through 0x1FFF_FFFF
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5.5.1.2

Boot ROM Write-Protect 
Register

The boot ROM write protect register stores a word at offset 0x5C. The register is initial-
ized to 0xFFFF_FF3F at reset. Software can override the hardware write protection 
configured at reset by writing 0xC0DE_99xx to this register, with the least-significant 6 
bits containing the desired software write protection value. Care must be taken not to 
change the protection while data is being written to the boot ROM. To prevent this, 
read a word from the boot ROM immediately before changing this register.

The register has the following fields:

Bits 5:0 WProt Write-Protect Value. The number of 64 KB blocks, 
minus 1, to be write-protected (up to 63 blocks). 0 
protects 1 block, all 1s disables protection.

Bits 7:6 Reserved Hardwired to 0

Bits 31:8 Key Hardware Protection Override Key
0xC0DE_99 = Override the hardware protection con-
figured at reset. To re-enable hardware protection, 
software must write a value other than 0xC0DE_99 
to this field. After re-enabling of hardware protection, 
the key field changes to all 1s. 

5.5.2

Standard and Fault-
Recovery Boot ROM 
Spaces

The boot ROM may be configured with two distinct address spaces: standard and fault-
recovery. The standard address space is used for normal operation. The fault-recovery 
space is used when the standard flash ROM is corrupted or requires updating.

5.5.2.1

Standard Space
The standard boot ROM address space consists of a hardware-protected boot block 
and a software-protected address range (Section 5.5.1). Table 14 shows the boot 
ROM memory map during standard operation for a 1 MB ROM. 
 

5.5.2.2

SIMM Slot 4 Fault-
Recovery Space

The fault-recovery boot ROM address space can be accessed when the standard flash 
boot ROM is corrupted or requires updating. The controller may be configured to boot 
from SIMM slot 4 instead of from boot ROM. This is done by driving MuxAd[8] high dur-
ing reset. When the controller detects this signal high on the rising edge of RST#, the 
boot ROM address space (0x1F00_0000 through 0x1FFF_FFFF) is mapped into 
SIMM slot 4. When booting the system in this manner, the controller assumes that 
SIMM slot 4 is populated with an 85-ns flash SIMM. When booting from SIMM slot 4, 
the boot ROM will be forced into address 0x1E00_0000, 0x1E80_0000, or 
0x1EC0_0000, depending on its size. 

Table 14: Example Standard Mode 1MB Boot ROM Memory Map

A[31:28]  Address A[27:0] Size Description

1 E00_0000 to FBF_FFFF 28 MB Unused

FC0_0000 to FC0_FFFF 64 KB Boot block, hardware-protected against writes

FC1 0000 to FCF_FFFF 960 KB Regular flash ROM, software-protected only

FD0_0000 to FFF_FFFF 3 MB Unused
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Table 15 shows the boot ROM memory map during fault-recover mode operation. 
Table 16 shows the required values in SIMM memory control register 4 for booting 
from SIMM 4. In this mode, the SIMM memory control register 4 returns the value 
0x1F03_001E when read. The hardware protection for the boot ROM remains in place 
even when the ROM is remapped for booting from SIMM 4.

a. In boot from SIMM mode, A28 must be 1 to access SIMM4.

5.6

Base Memory
The controller supports up to 16 MB of base memory. This memory, if installed, must 
be populated with either of the following two types of memory devices:

• 4 Mb EDO (60-ns)
• 16 Mb SDRAM (10-ns) not bank-interleaved

The controller can perform page comparisons on addresses in the base memory 
range, to allow pages to remain open between accesses to base memory. 

5.6.1

Base Memory Control 
Register

The base memory control register configures base memory. The register is initialized 
to 0 at reset, and it must not be changed during any other type of access (CPU, DMA, 
or PCI bus) to base memory. If base memory is enabled, software should perform a 
read immediately before writing to this register, because write cycles are posted in the 
controller’s write FIFO, and a read cycle will force the controller to write back the FIFO 
contents before servicing the read. 

The base memory control register stores a word at offset 0x0 in the system memory 
space. It has the following fields:

Table 15: Example Fault Recovery Mode 1 MB Boot ROM Memory Map

A[31:28] Address A[27:0] Size Description

1 E00_0000 to EBF_FFFF 12 MB Unused

EC0_0000 to EC0_FFFF 64 KB Boot block alternate address,
hardware-protected against writes

EC1 0000 to ECF_FFFF 960 KB Regular flash ROM alternate address,
software-protected only

ED0_0000 to EFF_FFFF 3 MB Unused

F00_0000 to FFF_FFFF 16 MB SIMM slot 4, configured for 90 ns flash, double-sided

Table 16: SIMM-Memory Control Register 4 Values for Booting From SIMM 4

Register Field Value

Memory type 2 = rlash

Number of sides 1 = double-sided

SIMM memory enable 1 = enabled

Address multiplexing mode 1 = 10 x 10 (mux mode 1)

EDO identification mode 0 = normal mode

MDa/MDb bit 31 during EDO ID 0 = read-only

Bank interleaving 0 = non-bank-interleaved

Physical address mask 0x18 = size of 16M bytes

SIMM memory base address a 0x78 = base address 0x0f00_0000
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Bits 1:0 Type Memory Type
0 = EDO
1 = Invalid
2 = Invalid
3 = SDRAM (16 Mb module only)

Bit 2 Reserved Hardwired to 0

Bit 3 En Base-Memory Enable
1 = Enables base memory
0 = Disables base memory

Bits 5:4 MuxMode Address-Multiplexing Mode 
00 = Mux mode 0
01 = Mux mode 1
10 = Mux mode 2
11 = Mux mode 3
See Table 8 and Table 9 for descriptions of these 
modes. Only mode 3 is allowed for SDRAM.

Bit 6 In Bank-Interleaving
1 = Enable bank interleaving. When bank interleav-
ing is enabled, even-word addresses are accessed 
on the MDa bus, and odd-word addresses are 
accessed on the MDb bus. Bank interleaving can 
only be used when base memory is populated with 
EDO DRAM; it cannot be used with SDRAM. 
0 = Disable bank-interleaving. When bank-interleav-
ing is disabled, all base memory accesses are per-
formed on the MDa bus alone. 

Bit 7 PM Page Mode
1 = Enable page mode. When enabled, accesses to 
base memory leave a memory page open (MRAS# 
asserted) at the end of the cycle. Page mode can 
only be used when base memory is populated with 
EDO DRAM; it cannot be used with SDRAM. 
0 = Disable page mode. Accessing the same mem-
ory with address bit 28 set to 0 will cause the control-
ler to close the page at the end of the cycle. When 
disabled, accesses to base memory close the mem-
ory page (MRAS# negated) at the end of the cycle. 

Bits 13:8 Reserved Hardwired to 0

Bits 15:14 Mask Physical-Address Mask. This 2-bit mask determines 
the size of base memory by masking off address bits 
from the address comparison beginning, with bit 22. 
Thus, bits 23:22 of the physical address may be 
masked, providing an address space between 4 MB 
(no bits masked) and 16 MB (2 bits masked). Masks 
must be a pattern of left justified 1s or 0s. A 1 in the 
mask field indicates that the corresponding address 
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bit is not masked. Address bit 28 is not used in the 
address comparison; it is only used when page 
mode is enabled. Addresses with address bit 28 
cleared to 0 or set to 1 alias to one another. 

Bits 21:16 Reserved Hardwired to 0

Bits 27:22 BaseAdd Base Memory Base Address. This 6-bit field is com-
pared with bits 27:22 of the physical address. A 
match indicates that the access is to base memory. 
Base memory must not be overlapped with any other 
resource in the system.

Bits 31:28 Reserved Hardwired to 0

5.6.2

Base Memory Page 
Mode

The controller can maintain an open memory page (MRAS# negated) within the base 
memory range. Page mode is enabled by the PM bit (bit 7) in the base memory control 
register. Page mode can only be used when base memory is populated with EDO 
DRAM; it cannot be used with SDRAM. 

When enabled, page mode becomes active during accesses to base memory in which 
address bit 28 set to 1. If a page is currently open from the previous access, the con-
troller performs an address comparison to determine if the current access is within the 
same page. If so, access is performed using the EDO page-hit timing (MCAS# only). If 
the access is not within the same page (a page miss), an MRAS# precharge is per-
formed and a normal memory access occurs. The controller then holds the page open 
at the end of the cycle.

When the base memory is accessed with address bit 28 cleared to 0, page mode is not 
used. If a page is currently being held open, and the current access is a hit, a normal 
EDO page-hit cycle is performed. At the end of the cycle, the page is closed. If the 
access is a miss, an MRAS# precharge occurs, and the page is closed at the end of the 
cycle.

Because address bit 28 is not used to decode base-memory addresses, base memory 
is alias to two ranges 256 MB apart. No other system resources may be placed in this 
address range, whether or not page mode is enabled.

For bank-interleaved base memory, the page size is 512 words, or 2 KB. For non-
bank-interleaved base memory, the page size is half that (i.e. 1 KB).

5.6.3

Base Memory 
Prefetching

When page mode is enabled for base memory (bit 7 set in the base memory control 
register), the controller automatically prefetches two words from base memory into a 2-
word prefetch FIFO. That is, after each read, the controller prefetches two additional 
words into its internal prefetch FIFO. If the processor subsequently attempts a read 
from an address immediately following (sequential to) the address of the last read 
cycle, the first two words will supplied from the prefetch FIFO. Table 17 shows the 
words that will be placed in the prefetch FIFO following various types of base memory 
read cycles. 
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a. Access is illegal because of the alignment

The controller compares the current SysAd address with the previous address to deter-
mine the sequential nature of the access. If sequential, the data will be available to the 
CPU three SysAd clocks prior than in the nonsequential case. Prefetched words are 
retained in the prefetch FIFO if accesses to resources other than base memory are 
performed between base memory accesses. Writes to base memory invalidate the 
prefetched words and force a sequential miss. 

5.6.4

SDRAM in Base 
Memory

The base memory space can be populated with either 16 Mb SDRAM or 4Mb EDO 
modules. This section describes only the SDRAM option. 

5.6.4.1

SDRAM Device 
Configurations

The controller supports the following 16 Mb NEC SDRAM parts and configurations in 
base memory. No other manufacturers’ SDRAM parts are supported:

• 1M x 16 (16Mb) chips, 2 banks of 2K rows, 256 columns (NEC # µPD4516821)
• 2M x 8 (16Mb) chips, 2 banks of 2K rows, 512 columns (NEC # µPD4516421)

Table 18 shows some of the SDRAM configurations supported for base memory. Table 
19 shows SDRAM configurations that are not supported in base memory (but may be 
supported in SIMM memory). 

 

Table 17: Prefetch FIFO Contents Versus Read Sizes and Alignment

Start Address
(Word Address)

One-Word Access Two-Word Access Four-Word Access Eight-Word Access

Word(s) to 
CPU

Prefetched 
Word(s)

Word(s) to 
CPU

Prefetched 
Word(s)

Word(s) to 
CPU

Prefetched 
Word(s)

Words to 
CPU

Prefetched 
Word(s)

0 0 1 0, 1 2, 3 0, 1, 2, 3 4, 5 0, 7 8, 9

1 1 2, 3 Not used a Not used a Not used a Not used a Not used a Not used a

2 2 3 2, 3 4, 5 2, 3, 0, 1 4, 5 Not used a Not used a

3 3 4, 5 Not used a Not used a Not used a Not used a Not used a Not used a

4 4 5 4, 5 6, 7 4, 5, 6, 7 8, 9 Not used a Not used a

5 5 6, 7 Not used a Not used a Not used a Not used a Not used a Not used a

Table 18: Base-Memory SDRAM Configurations Supported

Memory Size

SysAd 
Address 
Bits 
Required

Bank A Bank B Sides
Bank 
Interleaved

SysAd[25:21] 
Mask Bits

NEC Part Number

4 MB 21:0 2, 1M x 16 Empty Single No 11 µPD4516821G5-A10

8 MB 22:0 2, 1M x 16 2, 1M x 16 Single No 10 µPD4516821G5-A10

16 MB 23:0 4, 2M x 8 4, 2M x 8 Single No 00 µPD4516421G5-A10
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5.6.4.2

SDRAM Signal 
Connections

Figure 4 shows how the NEC 16Mb SDRAMs are connected for base memory. Bank A 
uses BRAS# for chip selects, MCASa[3:0]# for the data I/O masks (DQMs), and 
MDa[31:0] for data. Bank B uses BOE# for chip selects, MCASb[3:0]# for the DQMs, 
and MDb[31:0] for data. 

Both banks share the same SDRAS#, SDCAS#, and BWE# signals. Both banks must 
be programmed as non-bank interleaved, non-page mode. To do this, clear bits 6 and 
7 in the base memory control register (an other values of bits 6 or 7 have unpredictable 
results). When programmed in this way, the two banks of base memory behave as two 
halves of the address range, with the highest unmasked address bit controlling bank 
selection.

Table 19: Base-Memory SDRAM Configuration Not Supported

Memory Size

SysAd 
Address 
Bits 
Required

Bank A Bank B Sides
Bank-
Interleaved

SysAd[25:21] 
Mask Bits

NEC Part Number

8 MB 22:0 4, 2M x 8 empty Single No 11 Not supported in base mem

16 MB 23:0 8, 4M x 4 empty Single No 00 Not supported in base mem

32 MB 24:0 8, 4M x 4 8, 4M x 4 Single No 00 Not supported in base mem
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Figure 4:   SDRAM Connections for Base Memory 

5.6.4.3

Bank Interleaving 
Versus SDRAM Burst 
Type and Banks

The terms interleaved and bank have multiple meanings in the context of memory 
design using SDRAM chips.

• Bank Interleaving (applied to memory modules): memory modules (whether 
SDRAM or DRAM) are said to be bank-interleaved (also called double-bank) or 
noninterleaved (also called single-bank). This concept relates to performance (in 
bank-interleaved systems, two words, one from each bank, can be transferred in a 
single clock cycle) as well as to the word order in which data is read into and 
written out of the modules (even-word addresses are accessed on bank A, and 
odd-word addresses are accessed on bank B). The system board can be designed 
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to support bank interleaving by connecting the MDa bus to one group of memory 
modules and the MDb bus to another. Software can then configure bank 
interleaving, although in base memory (as opposed to SIMM memory), bank 
interleaving cannot be implemented if SDRAM chips are present.

• Banks (applied to memory modules and SDRAMs in different ways): The banks 
referenced with respect to memory modules differ from banks inside an SDRAM. 
For modules, their hardwiring to the MDa or MDb bus identifies their bank. For 
SDRAMs, MuxAd[11] serves as the bank select for all chips on a module.

• Burst Type (applies to SDRAM chips): The burst type of a single SDRAM chip is 
programmed in the chip’s mode register to be either interleaved or sequential. This 
concept relates only to the word order in which data is read into and written out of 
the SDRAM chip. The concept does not relate to the number of words transferred 
in a given clock cycle. The burst type for all SDRAM chips attached to the 
controller is configured during the Memory Initialization procedure (Section 5.10). 

5.6.4.4

SDRAM Word Ordering
Table 20 shows the word address order for an 8-word instruction cache line fill from 
SDRAM. This order is determined by the SDRAM chips’ burst type, which is pro-
grammed during the Memory Initialization procedure described in Section 5.10. The 
controller programs the burst type and word order the same for all SDRAM chips con-
nected to it (both in the base memory and SIMM memory ranges). The term “inter-
leaved” in this table refers to the SDRAM burst type, not the bank interleaving mode. If 
the burst type is interleaved (right-most column), A[2] selects the interleaved word and 
A[4:3] specifies the starting address. Burst length depends only on the access type 
performed by the CPU or PCI bus master; all CPU and burst lengths are supported. 

The controller initialization any SDRAM chips in the 8-word burst length mode. 
Because of this, the controller always reads 8 words from SDRAM, regardless of the 
data width requested. However, the controller only returns the requested number of 

a. The controller assumes that all SDRAMs are initialized to the interleaved burst type, 
using a burst length of 8 words. (The interleaved burst type used by SDRAMs is differ-
ent than the bank interleaving used by SIMM or DIMM modules; see Section 5.6.4.3.) 

b. The controller does not support sequential burst type for SDRAMs. It assumes that all 
SDRAMs are initialized to the interleaved burst type, using a burst length of 8 words. 

c. In the interleaved burst type for SDRAM chips, if the SIMM or DIMM modules carrying 
the chips are bank interleaved, address bit A[2] selects the bank, and bits A[4:2] spec-
ify the word within the bank. (The interleaved burst type used by SDRAMs is different 
than the bank interleaving used by SIMM or DIMM modules; see Section 5.6.4.3.) 

Table 20: SDRAM Word Order for Instruction Cache Line Fill

Word Address 
A[4:2]

SDRAM Chip Burst Type a

Sequential b Interleaved c

000 Not supported 0-1-2-3-4-5-6-7

001 Not supported 1-0-3-2-5-4-7-6

010 Not supported 2-3-0-1-6-7-4-5

011 Not supported 3-2-1-0-7-6-5-4

100 Not supported 4-5-6-7-0-1-2-3

101 Not supported 5-4-7-6-1-0-3-2

110 Not supported 6-7-4-5-2-3-0-1

111 Not supported 7-0-1-2-3-4-5-6
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words to the CPU or PCI bus master; any remaining words are either stored in the con-
troller’s internal base memory prefetch FIFO (Section 5.6.3) or discarded. In the case 
of writes, the CPU or PCI bus master can write any number of bytes, and the controller 
automatically issues a burst stop or precharge termination command to the SDRAM in 
order to store only the correct number of bytes in the SDRAM. 

5.7

SIMM Memory
The controller supports four programmable address ranges for independently con-
trolled 72-pin SIMM or DIMM modules (in this document, “SIMM” and “DIMM” are used 
as synonyms). SIMM slots 1 and 3 are connected to the MDa bus (bank A), and SIMM 
slots 2 and 4 are connected to the MDb bus (bank B). The four SIMM slots may be con-
figured with SDRAM, EDO DRAM, fast-page DRAM, or flash memory modules. To 
accommodate SIMM loading, F244 or F245 buffers must be used on the controller’s 
MuxAd signals. 

5.7.1

SIMM Memory Control 
Registers

The configuration of each SIMM is controlled by its own SIMM memory control register. 
The control register for SIMM slot 1 is called SIMM memory control register 1, and so 
on for SIMM slots 2, 3 and 4. The registers are initialized to 0 at reset. They must not 
be changed during any other type of access (CPU, DMA, or PCI bus) to the SIMM 
memory space. If SIMM memory is enabled, software should perform a read immedi-
ately before writing to this register, because write cycles are posted in the controller’s 
write FIFO, and a read cycle will force the controller to write back the FIFO contents 
before servicing the read cycle. 

The controller can be configured to force the system to boot from SIMM slot 4 instead 
of from boot ROM. For details, and for the values in SIMM memory control register 4, 
see Section 5.5.2. 

The four SIMM memory control registers are each 4 bytes wide, at offsets 0x4, 0x8, 
0x0C, and 0x10. Each has the following fields:

Bits 1:0 Type Memory Type
0 = EDO DRAM
1 = Fast-page DRAM
2 = Flash
3 = SDRAM (16 Mb or 64 Mb)

Bit 2 SD Number Of Sides
1 = Two-sided. See Section 5.7.3.2 on page 28. 
0 = Single-sided

Bit 3 En SIMM Memory Enable
1 = Enables SIMM memory
0 = Disables SIMM memory
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Bits 5:4 MuxMode Address Multiplexing Mode 0, 1, 2, or 3
00 = Mux mode 0
01 = Mux mode 1
10 = Mux mode 2
11 = Mux mode 3
See Table 8 and Table 9 for descriptions of these 
modes. Mux mode 4 is configured by clearing bits 
5:4 to 0 (as in mux mode 0), and setting bit 12. 

Bit 6 ID EDO Identification Mode
1 = Places the controller into the EDO identification 
mode, which is a special boot sequence. This bit is 
used in conjunction with bit 7. 

Bit 7 D31 Value Of MDa or MDb Bit 31 During EDO Identifica-
tion Mode (read-only). The state of bit 31 on the MDa 
or MDb bus, at the time bit 6 of this register (the ID 
bit) is set to 1 (in other words, while the EDO identifi-
cation sequence is being performed). At all other 
times, the value of this bit is 0. This bit is used only in 
conjunction with bit 6 (the ID bit). 

Bit 8 In Bank Interleaving
1 = Enable. When bank interleaving is enabled, 
even-word addresses are accessed on the MDa bus, 
and odd-word addresses are accessed on the MDb 
bus. When this bit is set in SIMM memory control 
register 1, SIMM 2 is assumed to be bank-inter-
leaved with SIMM 1. When the bit is set in SIMM 
memory control register 3, SIMM 4 is assumed to be 
bank interleaved with SIMM 3. This bit is unused in 
SIMM memory control registers 2 and 4, which are 
hardwired to 0. See Section 5.7.2.
0 = Disable. When bank interleaving is disabled, both 
even- and odd-word accesses occur on the MD bus 
to which the accessed SIMM is connected.

Bit 11:9 Reserved Hardwired to 0

Bit 12 MuxMode4 Address-Multiplexing Mode 4
1 = Mux mode 4 (used for 64 Mb SDRAM only). 
0 = Mux mode 0, 1, 2 or 3, as determined by bits 5:4, 
above. See Table 9 for a description of mux mode 4. 

Bits 17:13 Mask Physical Address Mask. This 5-bit mask determines 
the size of SIMM memory by masking off address 
bits from the address comparison beginning with bit 
21. Thus, bits 25:21 of the physical address may be 
masked, providing an address space between 2 MB 
(no bits masked) and 64 MB (5 bits masked). Masks 
must be a pattern of left justified 1s or 0s. A 1 in the 
mask field indicates that the corresponding address 
bit is not masked. 
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Bits 20:18 Reserved Hardwired to 0

Bits 27:21 SimmAdd SIMM Memory Base Address. This 7-bit field (when 
appended with bits 31:28, which are always 0) is 
compared with the most-significant 11 bits of the 
physical address. A match indicates that the access 
is to the corresponding SIMM. Bit 28 is not used in 
the address compare.

Bits 31:28 Reserved Hardwired to 0

5.7.2

Bank Interleaving
SIMMs may be bank interleaved to increase performance. SIMM memory control reg-
isters 1 and 3 control bank interleaving, allowing SIMM 1 to be bank interleaved with 
SIMM 2, and SIMM 3 to be bank interleaved with SIMM 4. When the bank-interleaving 
control bit (bit 8) is set in SIMM memory control register 1, all parameters of SIMM 2 
are automatically set equal to those of SIMM 1. The address range for the entire bank-
interleaved block must be programmed into SIMM memory control register 1. 

For example, bank interleaving two 8-MB SIMMs requires programming a 16 MB range 
in the SIMM memory control register 1; SIMM memory control register 2 is not used 
and need not be programmed. The modules used in SIMM 1 and SIMM 2 must be 
equivalent. SIMM 3 may be bank interleaved with SIMM 4 in a similar manner.

When SIMMs are bank interleaved, even-word addresses correspond to the SIMM 
attached to MDa (bank A), and odd-word address correspond to the SIMM attached to 
MDb (bank B). When SIMMs are non-bank interleaved, both even- and odd-word 
accesses occur on the MD bus to which the accessed SIMM is connected.

5.7.3

SDRAM in SIMM 
Memory

The SIMM Memory address ranges can be populated with flash, SDRAM, EDO, or 
fast-page SIMM or DIMM modules. This section describes only the SDRAM option. 
The term interleaved has two different meanings in the context of SDRAM memory. 
See Section 5.6.4.3 on page 23 for details. 

5.7.3.1

SDRAM Device 
Configurations

The controller supports the following 16 Mb and 64 Mb NEC SDRAM parts and config-
urations in SIMM memory. No other manufacturers’ SDRAM parts are supported:

• 1M x 16 (16Mb) chips, 2 banks of 2k rows, 256 columns (NEC # µPD4516821)
• 2M x 8 (16Mb) chips, 2 banks of 2k rows, 512 columns (NEC # µPD4516421)
• 4M x 4 (16Mb) chips, 2 banks of 2k rows, 1K columns (NEC part)
• 4M x 16 (64Mb) chips, 2 banks of 8k rows, 512 columns (NEC # µPD4564821) 
• 8M x 8 (64Mb) chips, 2 banks of 8k rows, 1K columns (NEC # µPD4564421)

Table 21 shows some of the SDRAM configurations supported for base memory. 
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a. For bank-interleaved configurations, SIMM 1 and SIMM 3 are connected to the MCASa and MDa buses and are consid-
ered bank A; SIMM 2 and SIMM 4 are connected to the MCASb and MDb buses and are considered bank B.

5.7.3.2

Double-Sided (DIMM) 
Modules

If the side bit (bit 2) in the SIMM memory control registers 1 and 3 is set (indicating dou-
ble-sided modules), the controller maps the lower half of the address range to the front 
side and the upper half to the back side. If the side bit is cleared (indicating single-sided 
modules), the controller maps the entire address range to the front side. 

100-pin DIMMs are the only DIMM package supported. Each DIMM has four chip-
select signals: S0, S1, S2, and S3. In bank-interleaved (two-bank) configurations, each 
module uses all four of its chip-select inputs: its front-side inputs (S0 and S2) and its 
back-side inputs (S1 and S3). In non-interleaved (single-bank) configurations, each 
module uses only its two front-side chip-select inputs (S0 and S2). 

In bank-interleaved configurations, each of the controller signals used as chip-selects 
can be connected to a maximum of four chip-select inputs on a single SDRAM chip (a 
DIMM module typical carries between 1 and 16 such chips). 

5.7.3.3

SDRAM Signal 
Connections

Figure 5 shows how SDRAMs SIMM or DIMM modules are connected in the SIMM 
memory range. This example shows six controller signals used as chip-selects: 
MRAS[3:0] and SDCS[1:0]. Normally eight controller signals would be used as chip-
selects, as shown in Table 22 (two signals for each side of each module), but two of the 
signals in Figure 5 (MRAS[1] and MRAS[3]) serve two modules each, due to the limited 
number of signals available on the controller. MRAS[1] and MRAS[3 may need buffer-
ing. The available chip selects from the controller can be connected in any way to the 
modules; software need not be concerned about how these connections are made. 

If the SIMM memory control registers 1 and 3 are programmed to implement bank 
interleaving (bit 8 set), SIMMs 1 and 3 contain even words (MuxAd[2] = 0), and SIMMs 
2 and 4 contain odd words (MuxAd[2] = 1). Alternatively, if the SIMM memory control 
registers 1 and 3 are programmed to implement non-bank-interleaved memory, SIMM 
1 and SIMM 3 contain both even and odd words, and SIMM 2 and SIMM 4 are 
assumed to be absent (and are not accessed). 

Table 21: SIMM-Memory SDRAM Configuration Examples

Memory Size

SysAd 
Address 
Bits 
Required

Bank A Bank B Sides
Bank 
Interleaved a

SysAd[25:21] 
Mask Bits

NEC Part Number

4 MB 21:0 2, 1M x 16 Empty Single No 11110 µPD4516821G5-A10

8 MB 22:0 2, 1M x 16 Empty Double No 11100 µPD4516821G5-A10

8 MB 22:0 2, 1M x 16 2, 1M x 16 Single Yes 11100 µPD4516821G5-A10

8 MB 22:0 4, 2M x 8 Empty Single No 11100 µPD4516421G5-A10

16 MB 23:0 2, 1M x 16 2, 1M x 16 Double Yes 11000 µPD4516821G5-A10

16 MB 23:0 4, 2M x 8 Empty Double No 11000 µPD4516421G5-A10

16 MB 23:0 4, 2M x 8 4, 2M x 8 Single Yes 11000 µPD4516421G5-A10

16 MB 23:0 8, 4M x 4 Empty Single No 11000 NEC part

32 MB 24:0 4, 2M x 8 4, 2M x 8 Double Yes 10000 µPD4516421G5-A10

32 MB 24:0 8, 4M x 4 8, 4M x 4 Single Yes 10000 NEC part
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Figure 5:   SDRAM Connections for SIMM Memory 

5.7.3.4

SDRAM Loads and 
Signals

Table 22 shows the number of device loads and signals used by various single-sided 
(SIMM) and double-sided (DIMM) configurations. In this table, one device load equals 
8 pF. 

SDRAM 1
(Low)

VRC4373 
System Controller

WE

CAS

RAS

CS

CKE

CLK

DQM

A[11:0] or [13:0] DQ[31:0]

SDCAS#

SDRAS#

MRAS[1:0]#

SDCKE[0]

SDCLK[0]

MCASa[3:0]#

MWE#

MuxAd [11:0] or [13:0]

MDa[31:0]

SDRAM 2
(Low)

WE

CAS

RAS

CS

CKE

CLK

DQM

A[11:0] or [13:0] DQ[31:0]

MDb[31:0]

SDRAM 3
(High)

WE

CAS

RAS

CS

CKE

CLK

DQM

A[11:0] or [13:0] DQ[31:0]

MRAS[3:2]#

SDCKE[2]

SDCLK[2]

MCASa[3:0]#

SDRAM 4
(High)

WE

CAS

RAS

CS

CKE

CLK

DQM

A[11:0] or [13:0] DQ[31:0]

MRAS[1]#

SDCKE[1]

SDCLK[1]

MCASb[3:0]#

SDCKE[3]

SDCLK[3]

MCASb[3:0]#

SDCS[0]#

MRAS[3]#
SDCS[1]#

F245

F245
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a. One device load equals 8 pF.
b. N/S = not supported.
c. DIMM modules have four chip-select signals (S0, S1, S2, S3). In single-bank configu-

rations, only two are used (S0 and S2). In bank-interleaved configurations, all four are 
used; S0 and S2 on the front sides, S1 and S3 on the back sides. Each controller sig-
nal used for chip-select can connect to a maximum of four DIMMs. See Figure 5 for 
connections that use 6 chip-selects in a bank-interleaved configuration. MRAS[1] and 
MRAS[3] may need buffering if they serve two DIMMs, as shown in the figure. 

d. 12 address bits for 16 Mb SDRAM chips, 14 address bits for 32 Mb SDRAM chips. 
e. Each SIMM or DIMM module has two clock signals (CLK0 and CLK1). There can be a 

maximum of 8 SDRAM devices per DIMM module, in either single- or double-bank 
configurations. Each clock signal connects to four SDRAMs through two resistors.

f. Each SIMM or DIMM module has two clock enable signals (CKE0 and CKE1). There 
can be a maximum of eight SDRAM devices per DIMM module, in either single- or 
double-bank configurations. Each clock enable signal connects to four SDRAMs.

5.7.3.5

SDRAM Word Ordering
The word-address ordering for cache-line fills from SDRAM in the SIMM memory 
range is the same as the word-ordering in the base memory range. See the description 
in Section 5.6.4.4 on page 24.

5.8

DRAM Refresh
The controller supports CAS-before-RAS (CBR) DRAM refreshing to all DRAM 
address ranges. The refresh clock is derived from the system clock; its rate is deter-
mined by a programmable 12-bit counter in the DRAM refresh counter register, 
described below. 

5.8.1

DRAM Refresh 
Counter Register

The DRAM refresh counter register stores a word at offset 0x58. The register is initial-
ized to 0 at reset. It has the following fields:

Bits 11:0 Cntr Refresh Counter Value
The refresh counter counts down from this value, at 
the system clock rate. The refresh pulse is generated 
upon reaching 0. The reset value is 0. A value of 
0x400 is equivalent to approximately 15 ms at a 66 
MHz clock rate. DRAM refreshing in enabled and 

Table 22: Loads and Signals for a Single SIMM or DIMM Module

Signal to 
SIMM or 
DIMM 
Module

Number of Loads a
Number of Signals

x4 x8 x16 x32

1
Side

2
Sides

1
Side

2
Sides

1
Side

2
Sides

1
Side

2
Sides

1
Side

2
Sides

RAS 8 N/S b 4 8 2 4 1 2 1 1

CAS 8 N/S 4 8 2 4 1 2 1 1

WE 8 N/S 4 8 2 4 4 2 1 1

DQM 2 N/S 1 2 1 2 1 2 4 4

CS 4 N/S 2 2 1 1 1 1 2 c 4 c

Data 1 N/S 1 2 1 2 1 2 16 16

Address 8 N/S 4 8 2 4 1 2 12 or 14 d 12 or 14 d

CLK 4 N/S 4 4 2 2 1 1 2 e 2 e

CKE 4 N/S 4 4 2 2 1 1 2 f 2 f
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disabled in the power-on memory initialization regis-
ter (Section 5.10.1). 

Bits 31:12 Reserved Hardwired to 0

5.8.2

Refresh Mechanism
The refresh logic requests access to DRAM from the internal bus-arbitration logic each 
time the counter reaches 0. The refresh logic can accumulate up to a maximum of 8 
refresh requests while it is waiting for the bus. Once the refresh logic owns the bus, all 
accumulated refreshes are performed to base memory and any installed SIMMs, and 
no other accesses (CPU, DMA, or PCI) are allowed. Refreshes are staggered by one 
clock (that is, there is at least one bus clock between transitions on any pair of MRAS# 
signals).

Refresh automatically closes all open DRAM pages and clears the base memory 
prefetch FIFO. Refresh is disabled whenever the ID bit is set in any of the SIMM mem-
ory control registers, though refreshes will accumulate normally even when refresh is 
disabled. Accumulated refreshes are performed as soon as refreshing is re-enabled.

5.9

CPU-to-Memory 
Write FIFO

The controller has an 8-word CPU-to-memory write FIFO. (PCI writes to memory are 
buffered in the PCI target FIFO, described in Section 6.4.2.) This FIFO accepts writes 
at the maximum CPU speed. A single address is held for the buffered write cycle, 
allowing the buffering of a single write transaction. That transaction may be a word, 
double-word, 4-word data-cache writeback. When a word is placed in the FIFO by the 
CPU, the controller attempts to write the FIFO’s contents to memory as quickly as pos-
sible. If the next CPU read or write cycle is addressed to memory, the controller 
negates EOK#, thus causing the next CPU transaction (read or write) to stall until the 
controller empties its FIFO. If the next CPU transaction (read or write) is addressed to 
a PCI bus target, the controller asserts EOK#, thus allowing the CPU transaction to 
complete. If, upon completion of such a CPU transaction to a PCI bus target, the con-
troller’s FIFO is still not empty, the controller will again negates EOK# to stall the next 
CPU write until the contents of the FIFO are written back to memory.

5.10

Memory 
Initialization

Memory must be initialized by software at power-on, before memory is accessed. The 
following sections describe the configuration register and sequence used for this initial-
ization.

5.10.1

Power-On Memory 
Initialization Register

The power-on memory initialization register configures SDRAM in both the base mem-
ory and SIMM memory address ranges. The register is initialized to 0 at reset, and it 
must be configured before memory is accessed after power-on. The register stores a 
word at offset 0x78 and has the following fields:

Bit 0 Mode SDRAM Mode Set
1 = Enable writing to the mode registers on all 
SDRAM chips. When this bit is set, the controller 
automatically provides the data that configures all 
SDRAM chips on all SIMMs or DIMMs for a burst 
length of 8 words, burst type of interleaved, and CAS 
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latency of 3 cycles. These are the only SDRAM 
modes the controller supports. 
0 = Disable writing to mode registers on SDRAMs

Bit 1 Precharge SDRAM Precharge
1 = Precharge. Setting this bit causes the controller 
to issue two sequential precharge commands to any 
SDRAMs in the base memory and SIMM memory 
ranges. Do not set this bit during normal operation of 
the system. It should be set only during the power-on 
process.
0 = No Precharge. This bit is cleared automatically 
by the controller at the end of the two precharge 
commands. 

Bit 2 Refresh Refresh Enable (SDRAM and DRAM)
1 = Refresh. Setting this bit causes the controller to 
issue eight sequential automatic refresh (CAS-
before-RAS) commands to any SDRAMs in the base 
memory and SIMM memory ranges. This is required 
during SDRAM initialization. The refresh commands 
are issued only if the SDRAM memory type has been 
programmed in the base memory or SIMM memory 
ranges. This bit also enables refresh of DRAMs. 
0 = No Refresh. (Default value at power-on or reset.) 
This bit is cleared automatically by the controller at 
the end of the eight automatic refresh commands. 

Bits 31:3 Reserved Hardwired to 0

5.10.2

Power-On Initialization 
Sequence

Follow this sequence to configure memory at power-on:

1. Program the base memory control register (see Section 5.6).

2. Program the four SIMM memory control registers, if these address ranges are used 
(see Section 5.7.1).

3. If SDRAM is installed in any address range, set the precharge bit (bit 1) in the 
power-on memory initialization register. 

4. Wait for 8 CPU clocks, if SDRAM devices are used. (This is required to finish the 
SDRAM precharge sequence initiated in step 3.)

5. Set the refresh bit (bit 2) in the power-on memory initialization register. This 
enables refresh for all SDRAM and DRAM, and (if SDRAM is installed) it initiates 
eight sequential SDRAM refresh cycles. 

6. Wait for step 5 to complete. If SDRAM is installed, this is approximately 60 CPU 
clocks (eight SDRAM refresh cycles). 

7. If SDRAM is installed in any address range, set the mode bit (bit 0) in the power-on 
memory initialization register. This configures all SDRAM chips for a burst length of 
8 words, a burst type of interleaved, and CAS latency of three cycles.

8. Wait for 9 CPU clocks, step 7 to complete.

9. Program the DRAM refresh counter register (Section 5.8.1). 
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At this point, memory is ready to use. All other configuration registers in the controller 
should then be programmed before commencing normal operation. 
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6.0 PCI Bus Interface
The controller’s PCI bus interface complies with the PCI Local Bus Specification, Revi-
sion 2.1. Complete master and target capabilities are supported. No external logic or 
buffering is necessary. The interface implements 3.3V PCI-compliant pads (5V toler-
ant) using the NEC CMOS-9 process technology. All PCI interface electrical character-
istics (loading, drive, impedance, capacitance, and so forth) comply fully with the PCI 
specification.

The PCI bus interface contains two separate data paths, one for CPU access and one 
for DMA. Each path has its own data pipeline and FIFO, and each one operates inde-
pendently of the other. The FIFOs in this interface include:

• 4-word (16-byte) bidirectional PCI master FIFO (CPU is PCI bus master)
• 8-word (32-byte) bidirectional PCI target FIFO (memory is PCI bus target)
• 8-word (32-byte) bidirectional DMA FIFO (PCI-to-memory or memory-to-PCI)

6.1

PCI Bus Timing
The PC bus operates at 33 MHz and supports full burst transfers; no wait states are 
required with adequately fast memory. Peak PCI bus bandwidth is 133 MB/sec. The 
PCI bus is synchronized to the SysAD bus, with the SysAD bus clock running at two 
times the PCI clock. 

6.2

PCI Commands 
Supported

Table 23 summarizes the PCI command codes supported, and not supported, by the 
controller as master and target. 

Table 23: PCI Commands

CBEn[3:0] Command As a master As a target

0000 Interrupt acknowledge No Ignored

0001 Special cycle No Ignored

0010 I/O read Yes, via PCI master I/O win-
dow (see Section 6.3)

Yes; must be in add-on board 
mode and hit PCI I/O base ad-
dress range.

0011 I/O write Yes, via PCI master I/O win-
dow (see Section 6.3)

Yes; must be in add-on board 
mode and hit PCI I/O base ad-
dress range.

010x Reserved — Ignored

0110 Memory read Yes, via PCI master address 
windows (see Section 6.3)

Yes; must hit a PCI target ad-
dress window (see Section 
6.4)

0111 Memory write Yes, via PCI master address 
windows (see Section 6.3)

Yes; must hit a PCI target ad-
dress window (see Section 
6.4)

100x Reserved — Ignored

1010 Configuration read Yes, via PCI configuration reg-
isters (see Section 6.5)

Yes, via PCI configuration 
registers (see Section 6.5)

1011 Configuration write Yes, via PCI configuration reg-
isters (see Section 6.5)

Yes, via PCI configuration 
registers (see Section 6.5)

1100 Memory read multiple No Aliased to memory read
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6.3

PCI Master 
Transactions (CPU-
to-PCI Bus)

The controller supports bidirectional data transfers between the CPU and PCI bus tar-
gets by becoming a PCI bus master. The CPU obtains access to PCI bus resources 
(summarized in Table 6 on page 7) by accessing a local physical address that corre-
sponds to one of three PCI address windows:

• PCI master address window 1
• PCI master address window 2
• PCI master I/O window 

These registers are at offsets 14, 18, and 24, respectively (see Table 5). They are con-
figured through the PCI master address window registers, described below. 

6.3.1

PCI Master Window 
Registers

The three PCI master window registers described above all have the same structure. 
They are initialized to 0 at reset. A register must not be changed while a write is posted 
to the PCI bus. There must be at least two CPU clocks between writing to such a reg-
ister and performing a PCI access through the window mapped by the register. 

Each of the three PCI master window registers contain the following fields: 

Bits 7:0 PCIAdd PCI Address. This 8-bit field replaces the most-sig-
nificant 8 bits of the address defined in the LAdd field 
when the address is transmitted to the PCI bus. Bits 
masked by the mask field (bits 19:13) are directly 
transferred from the CPU’s SysAD bus (rather than 
from the PCIAdd field).

Bits 11:8 Reserved Hardwired to 0

Bits 12 E Enable
1 = Enable access to the PCI bus through the 
address window specified in this register. 
0 = Disable access

Bits 19:13 Mask Physical Address Mask. This mask is used to deter-
mine the size of the PCI window. It masks 7 address 
bits from the address comparison, beginning with bit 
24. Thus, bits 30-24 may be masked, providing an 
address block size between 16 MB (no bits masked) 
and 2 GB (7 bits masked). A 0 in a mask bit indicates 
that the corresponding address bit is masked.

Bits 23:20 Reserved Hardwired to 0

1101 Dual address cycle No Ignored

1110 Memory read line No Aliased to memory read

1111 Memory write and invali-
date

No Aliased to memory erite

Table 23: PCI Commands (Continued)

CBEn[3:0] Command As a master As a target
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Bits 31:24 LAdd Local Base Address. This 8-bit field is compared with 
the most-significant 8 bits of the physical CPU 
address, conditioned on the mask field. A match indi-
cates that the access is to the PCI bus. LAdd should 
not be programmed to overlap PCI space with local 
resources (memory, registers or boot ROM) or PCI 
target windows; this will result in improper operation.

6.3.2

PCI Master 
Transaction Details

Transfers between the CPU and PCI bus are buffered through a 4-word bidirectional 
PCI master FIFO. This FIFO stores data and latches the address and byte enables for 
one CPU-to-PCI read or write transaction. When the CPU accesses an address in the 
window defined by the LAdd fields (bits 31:24) of either of the two PCI master address 
window registers or the PCI master I/O window, the data is transferred to and from the 
PCI bus through the FIFO. The FIFO improves performance and provides a mecha-
nism for resolving deadlocks between the PCI and SysAD buses. 

The FIFO size of 4 words allows the CPU to perform all possible write transactions. All 
CPU read transactions are supported, except instruction cache line fills (8-word burst 
transfers). 

For data cache line fills from the PCI bus, the controller reads 4 words from the PCI 
bus, beginning with the first word in the line (word address = 0), and returns them to the 
CPU in the correct sub-block order. For example, a data cache line fill from address 2 
is read from the PCI bus as 4 words, beginning at address 0 (0, 1, 2, 3) and returned 
to the CPU beginning at address 2 (2, 3, 0, 1). The controller does not support the PCI 
cache line wrap mode. 

During CPU-to-PCI bus transactions, the FIFO accepts write data at the CPU rate. If 
the CPU is performing a data-cache writeback, a burst of 4 words occurs. The address 
and byte-enables for the cycle are first latched in the FIFO. Then the data words are 
placed in the FIFO, and the PCI bus is requested. If the CPU attempts another PCI 
write before the FIFO is empty, the controller stalls the CPU write. If the PCI bus has 
not yet been acquired before the FIFO is filled, the controller indicates to the CPU that 
further write (and read) cycles will be stalled by negating the EOK# signal to the pro-
cessor. Write cycles to resources other than the PCI bus are allowed to complete after 
the controller decodes the address.

The controller uses the PCI block-transfer protocol if the CPU read is also more than 
one word. During block reads, the CPU is stalled by the controller until a word has been 
placed in the FIFO from the PCI bus. For CPU accesses to the PCI bus of less than 
one word, the controller reads or writes the correct number of bytes.

Until the controller is granted the PCI bus, another PCI master may have ownership of 
the PCI bus and may request access to the controller as a PCI target. A PCI target 
FIFO in the controller allows such an access to occur without causing deadlock, as 
described in the next section.
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6.4

PCI Target 
Transactions (PCI-
to-Memory)

The controller supports bidirectional data transfers between a PCI bus master and the 
controller’s memory, as target. The PCI bus master obtains access to the controller’s 
memory by accessing a local physical address that corresponds to one of two PCI 
address windows:

• PCI target address window 1 
• PCI target address window 2 

These registers are at offsets 1C and 20, respectively (see Table 5). They are config-
ured through the PCI master address window registers, described immediately below. 

6.4.1

PCI Target Window 
Registers

The two PCI target address window registers described above are initialized to 0 at 
reset. There must be at least two CPU clocks between writing to such a register and 
performing a PCI access through the window mapped by the register. 

Each of the two PCI target address window registers contain the following fields: 

Bits 10:0 LAdd Local Address. This 11-bit field replaces the most-
significant 11 bits of the PCI address defined in the 
PCIAdd field (bits 31:24), when the address is trans-
mitted to the memory. Bits masked by the mask field 
are directly transferred from the PCI bus, rather than 
from the LAdd field.

Bits 11 Reserved Hardwired to 0

Bits 12 E Enable
1 = Enable the PCI bus to access local resources 
through address window specified in this register. 
0 = Disable access.

Bits 19:13 Mask PCI Address Mask. This mask is used to determine 
the size of the local window. It will mask 7 address 
bits from the address comparison, beginning with bit 
21. Thus, bits 27-21 may be masked, providing an 
address block size between 2 MB (no bits masked) 
and 256 MB (7 bits masked). A 0 in a mask bit indi-
cates that the corresponding address bit is masked.

Bits 20 Reserved Hardwired to 0

Bits 31:21 PCIAdd PCI Address. This 11-bit field is compared with the 
most-significant 11 bits of the PCI address, condi-
tioned on the Mask field. A match indicates that the 
access is to the controller. Care must be taken not to 
overlap the two PCI target windows.

6.4.2

PCI-to-CPU 
Transactions Details

When the controller sees an address on the PCI bus that falls within one of its two PCI 
target address window ranges, it responds by requesting access to its attached mem-
ory. This prevents the CPU from obtaining access to the memory. The controller sup-
ports full-speed burst read and write cycles from by a PCI master. Accesses are 
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performed through an 8-word bidirectional PCI target FIFO. This FIFO stores data and 
latches the address and byte-enables for one PCI-to-CPU read or write transaction. 
PCI target transfers are performed with higher priority than PCI master transfers. Thus, 
if both CPU requests and PCI target requests for memory are present simultaneously, 
the PCI-target transfer occurs first.

During PCI target read cycles, the controller always accesses memory in 4-word 
reads, using the data cache miss protocol. These words are placed in the target FIFO 
and sent to the PCI bus at maximum speed. If the PCI read address is not aligned to a 
cache-line boundary, the controller stores only the required words in the target FIFO. 
When the PCI word address is 2 or 3, the controller transfers the word(s) and then 
does a target disconnect; the controller always disconnects if there are less than 2 
words left in the FIFO for a PCI read cycle. The controller uses the CPU’s sub-block 
ordering for PCI target read cycles. Table 24 shows the read order for various access 
quantities. 

If the controller detects bad parity on a PCI target address cycle, the controller reports 
the error in the PCI header, generates an interrupt on INTA# (if enabled), and performs 
the access (that is, ignores the parity error). If the controller detects bad parity on a PCI 
target data cycle, the controller reports the error in the PCI header, generates an inter-
rupt on INTA# (if enabled), and performs the write.

6.5

PCI Configuration 
Space

The controller provides a PCI configuration space, as described in the “PCI Local Bus 
Specification,” Section 6. This space supports bus master configuration cycles of PCI 
devices using a mechanism similar to configuration mechanism #1 (“PCI Local Bus 
Specification,” Section 3.7.4.1). 

Two 1-word registers are provided for software to perform configuration cycles:

• PCI configuration data register
• PCI configuration address register

These registers are at offsets 28 and 2C, respectively (see Table 5), and are cleared to 
0 at reset. To perform a configuration cycle, the CPU first writes an address to the PCI 
configuration address register, and then writes the transaction data to the PCI config-
uration data register. The access to the data register causes the cycle to begin. Byte 
enables, read/write state, and the full 32-bit address is passed through to the PCI bus, 
without mapping. The CPU is stalled during read cycles until the PCI configuration 
cycle completes. This mechanism precludes the CPU from performing bursts to config-
uration space. 

The PCI configuration address register format contains a register number field that is 
used to address specific PCI bus targets. Figure 3-20 of the “PCI Local Bus Specifica-

Table 24: PCI-Target Read Order and Buffering

PCI Word Address Words Placed in PCI Target FIFO

0 0 1 2 3

1 1 2 3

2 2 3

3 3
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tion” shows the format. Each configurable target on the PCI bus maintains a set of reg-
isters, called the PCI configuration space registers, that consist of header registers and 
device-dependent registers, as defined in Section 6.1 of the “PCI Local Bus Specifica-
tion.”

The controller implements two sets of the PCI configuration space registers, depend-
ing on its mode of operation:

• Host Bridge Mode: In this mode, the controller is located on the mother board and 
acts as the PCI host bridge for the system. The PCI configuration space registers 
for this mode are described in Section 6.6. 

• Add-on Board Mode: In this mode, the controller is located on a PCI board, rather 
than on the mother board. The PCI configuration space registers for this mode are 
described in Section 6.7. 

6.6

PCI Configuration 
Registers (Host 
Bridge Mode)

The CPU uses this configuration space during system boot to configure the controller. 
In the host bridge mode, the CPU accesses the controller directly through the control-
ler’s registers in the CPU’s memory space (Table 5); the PCI configuration address 
register and PCI configuration data register are not used. 

Table 25 shows the controller’s PCI configuration space registers for this mode. The 
alternating pattern of shading and no shading of rows in this table defines 4-byte word 
boundaries; some registers can be accessed on byte or 2-byte boundaries. The sec-
tions that follow define the fields in each register. 

After changing any of these registers, at least two CPU clocks must elapse before the 
start of a PCI access, either by the CPU, DMA, or an external master.

Table 25: PCI Configuration Space Registers (Host Bridge Mode) a

Offset from 
Base 
0F00_0000

Size 
(bytes)

Register Name Symbol CPU R/W Reset Value Description Reference

0x100 2 Vendor ID VID R 0x1033 Vendor ID for NEC Section 6.6.1 on page 40

0x102 2 Device ID DID R 0x005B VRC4373 controller’s device 
ID, assigned by NEC

Section 6.6.1 on page 40

0x104 2 Command PCICMD R/W 0x0 Provides coarse control of 
PCI interface

Section 6.6.2 on page 40

0x106 2 Status PCISTS R/WC b 0x0280 Status for PCI events Section 6.6.2 on page 40

0x108 1 Revision ID RID R 0x0 Device revision Section 6.6.3 on page 42

0x109 3 Class code CLASS R 0x06_0000 Device type Section 6.6.3 on page 42

0x10C 1 Cache-line size CLSIZ R 0x04 System cache line size 
(words)

Section 6.6.4 on page 42

0x10D 1 Latency timer MLTIM R/W 0x0 Value of latency timer for 
this master, in PCI clocks

Section 6.6.4 on page 42

0x10E 2 Reserved R 0x0

0x110 4 Mailbox base 
address

MBADD R/W 0x0 Base address for both 
mailboxes.

Section 6.6.5 on page 42

0x13B - 0x114 Reserved R 0x0

0x13C 1 Interrupt line INTLIN R 0x0 PCI interrupt signal Section 6.6.6 on page 43

0x13D 1 Interrupt pin INTPIN R 0x0 PCI interrupt pin Section 6.6.6 on page 43

0x13F - 0x13E 2 Reserved R 0x0
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a. The alternating pattern of shading and no shading of rows in this table defines 4-byte word boundaries.
b. Writing to this register is special. The bits can only be set by the controller hardware, and they are cleared by writing a 1 to them; writing 

a 0 leaves them unaffected. For example. writing 0x8000 clears the most significant bit. 

6.6.1

Vendor and Device ID
The vendor and device ID registers are read-only. Together, they constitute a word at 
offset 0x100.

6.6.1.1

Vendor ID
The 2-byte vendor ID register is read-only and can be accessed at offset 0x100: 

Bits 15:0 VID Vendor ID. Hardwired to 0x1033 for NEC. 

6.6.1.2

Device ID
The 2-byte vendor ID register is read-only and can be accessed at offset 0x102: 

Bits 31:16 DID Device ID. Hardwired to 0x0021 for the VRC4373 
controller. 

6.6.2

Command and Status
The command and status registers, plus reserved fields, constitute a word at offset 
0x104.

6.6.2.1

Command
The 2-byte command register is read/write and can be accessed at offset 0x104: 

Bit 0 IOEN I/O Space Enable. Cleared to 0 at reset. Software 
must set it to 1 to enable access to the PCI interrupt 
register status in the add-on board mode. 

Bit 1 MEMEN Memory Space Enable. Cleared to 0 at reset. Soft-
ware must set it to 1 to allow the controller to respond 
to memory space accesses.

Bit 2 BMAS Bus Master Enable. Cleared to 0 at reset. Software 
must set it to 1 to allow the controller to generate PCI 
accesses.

Bit 3 SPC Special Cycles Enable. Hardwired to 0. The control-
ler ignores special cycles.

Bit 4 MWI Memory Write And Invalidate Enable. Hardwired to 
0. The controller does not generate MWI commands.

0x140 1 Reserved R 0x0

0x141 1 Retry value RTYVAL R/W 0x0 Number of PCI bus retries 
the controller performs be-
fore giving up

Section 6.6.7 on page 43

0x142 2 PCI arbiter prior-
ity control and 
take away grant

PAPC R/W 0x0 Priority scheme used in 
granting access to PCI bus

Section 6.6.7 on page 43

0x1FF - 0x144 Reserved R 0x0

Table 25: PCI Configuration Space Registers (Host Bridge Mode) a (Continued)

Offset from 
Base 
0F00_0000

Size 
(bytes)

Register Name Symbol CPU R/W Reset Value Description Reference



41

Bit 5 VGA Hardwired to 0. The VRC4373 controller is not a VGA 
device.

Bit 6 PER Parity Error (PERR#) Enable
1 = Enable
0 = Disable

Bit 7 WAIT_CTL Wait cycle control. Hardwired to 0. The controller 
never does address stepping.

Bit 8 SERR_EN System Error (SERR#) Enable
1 = Enable
0 = Disable

Bit 9 FBBE Fast Back-to-Back Enable. Hardwired to 0. The con-
troller never generates back-to-back transactions.

The 1-byte location 0x105 is reserved:

Bits 15:10 Reserved Hardwired to 0

6.6.2.2

Status
The 2-byte status register can be accessed at offset 0x106. It uses a special read/write 
protocol: the bits can be set only by the controller hardware, but they can be cleared by 
writing a 1 to them; writing a 0 leaves them unaffected. For example. writing 0x8000 
clears the most significant bit. 

Bits 20:16 Reserved Hardwired to 0

Bit 21 66MHz 66 MHz Capable. Hardwired to 0. The controller is a 
33 MHz device.

Bit 22 UDF User-Definable Configuration (UDF) Support. Hard-
wired to 0. The controller doesn’t support UDF.

Bit 23 FBBC Fast Back-to-Back Capable. Hardwired to 1. The 
controller will accept fast back-to-back accesses.

Bit 24 DPR Data Parity Reported
1 = Enable
0 = Disable

Bits 26:25 DEVSEL Device Select (DEVSEL) Timing. Hardwired to 01 
(medium response).

Bit 27 STA Signaled Target Abort. Set to 1 if the controller sig-
nals a target abort. Otherwise, cleared to 0.

Bit 28 RTA Received Target Abort. Set to 1 whenever the mas-
ter receives a target abort. Otherwise, cleared to 0.

Bit 29 RMA Received Master Abort. Set whenever the master 
receives a master abort. Otherwise, cleared to 0.

Bit 30 SSE Signaled System Error 
1 = Generate a bus error interrupt
0 = No bus error
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Bit 31 DPE Detected Parity Error. Set when the controller 
detects a parity error. Otherwise, cleared to 0.

6.6.3

Revision ID and Class 
Code

The revision ID and class code registers are read-only. Together, they constitute a 
word at offset 0x108. They have the following fields:

6.6.3.1

Revision ID
The 1-byte revision ID register is read-only and can be accessed at offset 0x108: 

Bits 7:0 RID Revision ID. Hardwired to 0, indicating a gate array.

6.6.3.2

Class Code
The 3-byte revision ID register is read-only and can be accessed at offset 0x109:

Bits 15:8 Prog Programming Interface. Hardwired to 0.

Bits 23:16 SubCl Subclass. Hardwired to 0. 

Bits 31:24 BaseCl Base Class. Hardwired to 0x06 to indicate a bridge 
device.

6.6.4

Cache Line Size and 
Latency Timer

The cache line size and latency timer registers are both 1-byte wide, followed by two 
reserved bytes. Together, these locations constitute a word at offset 0x10C.

6.6.4.1

Cache Line Size
The 1-byte cache-line size register is read-only and can be accessed at offset 0x10C: 

Bits 7:0 CLSIZ Cache Line Size. Hardwired to 0x04, indicating four 
32-bit words in a cache line

6.6.4.2

Latency Timer
The 1-byte latency timer register is read/write and can be accessed at offset 0x10D: 

Bits 10:8 MLTIM Master Latency Time (low 3 bits). Hardwired to 0.

Bits 15:11 MLTIM Master Latency Time. See the “PCI Local Bus Spec-
ification,” Section 3.4.4.1 and 6.2.4.

The high 2 bytes in the word starting at offset 0x10E are reserved: 

Bits 23:16 Reserved Hardwired to 0

Bits 31:24 Reserved Hardwired to 0

6.6.5

Mailbox Base 
Addresses

The 1-word, read/write mailbox base addresses register is accessed at offset 0x110 in 
the PCI configuration space header. This register must not be changed while an exter-
nal agent is accessing one of the PCI mailboxes.

Bits 10:0 Reserved Hardwired to 0, to indicate that the controller’s PCI 
mailbox registers are located in a 32-bit memory 
space on a 4 KB boundary and are not prefetchable.
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Bits 11 MBNUM Mailbox Number. Selects the mailbox number:
1 = PCI mailbox register 2
0 = PCI mailbox register 1

Bits 31:12 MBADD Mailbox Base Address. Used to map the controller’s 
two mailboxes into the PCI memory space, on a 4 KB 
boundary.

6.6.6

Interrupt Line and 
Interrupt Pin

The interrupt line and interrupt pin registers, together, constitute a word at offset 
0x13C.

6.6.6.1

Interrupt Line
The 1-byte interrupt line register is read/write and can be accessed at offset 0x13C: 

Bits 7:0 INTLIN PCI Interrupt Line Register. This field should be writ-
ten by power-on self-test software to indicate which 
system interrupt controller input is connected to the 
INTA#l signal.

6.6.6.2

Interrupt Pin
The 1-byte interrupt pin register is read-only and can be accessed at offset 0x13D: 

Bits 15:8 INTPIN PCI Interrupt Pin Register. Reset to 1, indicating that 
INTA# is the controller’s PCI interrupt signal.

The two high bytes in the word starting at offset 0x140 are reserved: 

Bits 31:16 Reserved Hardwired to 0

6.6.7

Retry Value and PCI 
Arbiter Priority 
Control

The retry value and PCI arbiter priority control registers are read/write. Together, these 
locations constitute the word at offset 0x140. They have the following fields:

Bits 7:0 Reserved Hardwired to 0

6.6.7.1

Retry Value
The 1-byte retry value register can be accessed at offset 0x141: 

Bits 15:8 RTYVAL Retry Value. The number of retries the controller 
should attempt before giving up on a PCI transac-
tion. The actual retry count is readable in the PCI 
retry counter (Section 6.8). 

Bits 23:16 Reserved Hardwired to 0
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6.6.7.2

PCI Arbiter Priority 
Control

The 2-byte PCI arbiter priority control register can be accessed at offset 0x142: 

Bits 25:24 PAPC PCI Arbiter Priority Control
00 = Rotating Fair. (This is the reset value.) In this 
scheme, the priority of each requestor changes, in 
round-robin fashion, after every request to give every 
request a fair chance to acquire the bus. The rotation 
sequence begins with the controller’s internal 
request, followed by requestors 0,1,2,3 and back to 
an internal request. If any of the requestors is not 
active, the next requestor in the sequence becomes 
the highest priority. After a requestor has been 
granted the bus, it retains the bus, dependent on the 
TKYGNT bit.
01 = Rotating Alternate 0. In this scheme, the arbiter 
treats REQ0# in a special way. REQ0# is granted the 
bus every other transaction, if asserted. The rotation 
sequence is 0, i, 0, 1, 0, 2, 0, 3, 0, i ..., where i is the 
controller’s internal request. After a requestor is 
granted the bus, it retains the bus, dependent on the 
TKYGNT bit.
10 = Rotating Alternate 1. This scheme is identical to 
the Rotating Alternate 0 scheme, except that the 
controller’s internal request, rather than REQ0#, has 
the advantage. The rotation sequence is i, 0, i, 1, i, 2, 
i, 3, i, 0 ... After a requestor is granted the bus, it 
retains the bus, dependent on the TKYGNT bit.

Bit 25 TKYGNT Take Away Grant
0 = When REQx# is granted, it remains granted until 
the REQx# is negated. This is the reset value. 
1 = When REQx# is granted, the bus loses GNTx# if 
a higher-priority requestor requests. A rotating prior-
ity scheme is used, so all requests are at a higher pri-
ority.

The high byte in the word starting at offset 0x140 is reserved: 

Bits 31:27 Reserved Hardwired to 0

6.7

PCI Configuration 
Registers (Add-On 
Board Mode)

Table 26 shows the controller’s PCI configuration space registers when the controller 
is used in the add-on board mode, that is, when the controller is located on a PCI bus 
add-on board, rather than on the system mother board. Compare Table 26 with Table 
25 on page 39. Five additional registers are defined in the add-on board mode, as 
described in the sections immediately following Table 26. 
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a. The alternating pattern of shading and no shading of rows in this table defines 4-byte word boundaries.
b. — means not used. 
c. Writable by CPU if bit 1 of the PCI enable register is set to 1. Writable by PCI host if this bit = 0. See Section 6.10 on 

page 47. 
d. Writing to this register is special. The bits can only be set by the controller hardware, and they are cleared by writing a 1 to them; writing 

a 0 leaves them unaffected. For example, writing 0x8000 clears the most significant bit. 

6.7.1

BAR1 and BAR2 
Registers

The BAR1 and BAR2 registers are shown in Table 26. In the add-on board mode, after 
the controller's CONFIG_DONE bit in the PCI enable register is set to 1, a PCI master 

Table 26: PCI Configuration Space Registers (Add-On Board Mode) a

Offset from 
Base 
0F00_0000

Size 
(bytes)

Register 
Name

Symbol
CPU 
Bus 
R/W b

PCI 
bus 
R/W

Reset Value Description Reference

0x100 2 Vendor ID VID R R 0x1033 Vendor ID for NEC Section 6.6.1 on page 40

0x102 2 Device ID DID R R 0x005B VRC4373 controller’s de-
vice ID, assigned by NEC

Section 6.6.1 on page 40

0x104 2 Command PCICMD R/W c R/W c 0x0 Provides coarse control of 
PCI interface

Section 6.6.4 on page 42

0x106 2 Status PCISTS R/WC d R/WC d 0x0280 Status for PCI events Section 6.6.2 on page 40

0x108 1 Revision ID RID R R 0x0 Device revision Section 6.6.3 on page 42

0x109 3 Class code CLASS R R 0x06_0000 Device type Section 6.6.3 on page 42

0x10C 1 Cache-line sze CLSIZ — R 0x04 System cache-line size 
(words)

Section 6.6.4 on page 42

0x10D 1 Latency timer MLTIM R/Wc R/Wc 0x0 Value of latency timer for 
this master, in PCI clocks

Section 6.6.4 on page 42

0x10E 2 Reserved — R 0x0

0x110 4 Mailbox base 
address

MBADD R/W R/W 0x0 Base address for both 
mailboxes

Section 6.6.5 on page 42

0x114 4 Base address 
register 1

BAR1 — R/W 0x0 Base address register 1, 
for target memory

Section  on page 44

0x118 4 Base address 
register 2

BAR2 — R/W 0x0 Base address register 2, 
for target memory

Section  on page 44

0x11C 4 Base address 
register 3

BAR3 — R/W 0x0 Base address register 3, 
for add-on board interrupt 
Register

Section 6.7.2 on page 46

0x120 4 Base address 
register 4

BAR4 — R/W 0x0 Base address register 4, 
for add-on board interrupt 
Register

Section 6.7.3 on page 46

0x138 - 0x124 Reserved — — 0x0

0x13C 1 Interrupt line INTLIN — R 0x0 PCI interrupt signal Section 6.6.6 on page 43

0x13D 1 Interrupt pin INTPIN — R 0x0 PCI interrupt pin Section 6.6.6 on page 43

0x13F - 0x13E 2 Reserved — R 0x0

0x140 1 Reserved — R 0x0

0x141 1 Retry value RTYVAL — R 0x0 Number of PCI bus retries 
the controller performs be-
fore giving up

Section 6.6.7 on page 43

0x142 2 PCI arbiter pri-
ority control 
and take away 
grant

PAPC — R 0x0 Priority scheme used in 
granting access to PCI 
bus

Section 6.6.7 on page 43

0x1FF - 0x144 Reserved — R 0x0
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can program the BAR1 and BAR2 registers, and the controller will use them for the PCI 
target address window address ranges.

Both registers are initialized to 0 at reset.

Bits 20:0 Pref Prefetchable. Hardwired to 0x8, indicating prefetch-
able, relocatable memory (see PCI Specification, 
Section 6.2.5.1). This field is not used in the target 
address window address comparison. 

Bits 31:21 Base PCI Base Address. This field is compared with the 
most-significant 11 bits of the PCI address, after 
masking bits 27-21 of this field with the correspond-
ing PCI target address window register mask (bits 
19-13 of PCI target address window register 1 for 
BAR1, or PCI target address window register 2 for 
BAR2). The memory range can vary between 2 MB 
(no bits masked) and 256 MB (all bits masked). A 
match indicates the access is to the controller. If the 
address is all 0s, this register is treated as disabled 
and memory is not allocated. 

6.7.2

BAR3 Register
The BAR3 register is shown in Table 26. It contains the I/O address of the add-on 
board interrupt register.

Bits 1:0 Space Space Indicator. Hardwired to 01, indicating that the 
address is to I/O space. 

Bits 31:2 IOAddr I/O Address. The I/O address of the add-on board 
interrupt register (see Section 6.7.4). 

6.7.3

BAR4 Register
The BAR4 register is shown in Table 26. It contains the memory-mapped address of 
the add-on boardinterrupt register.

Bits 3:0 Space Space Indicator. Hardwired to 0, indicating that the 
address is to memory space.

Bits 31:4 MAddr Memory-Mapped Address. The mapped-memory 
address for the BAR3 I/O address. 

6.7.4

Add-on Board 
Interrupt Register

The add-on board interrupt register is located at the address specified in the BAR3 
Register (see Section 6.7.2). The register specifies the state of the INTA# signal. It 
contains only a single bit:

Bit 0 PCI_INT PCI Interrupt Pending
1 = pending PCI interrupt on INTA#
0 = no pending PCI interrupt on INTA#

Bits 31:1 Reserved Hardwired to 0

When the CPU reads the SET_PCI_INT bit (bit 3) of the PCI enable register (Section 
6.10), the controller returns the value of bit 0 in the add-on board interrupt register, 
which is the state of the INTA# signal. A PCI master causes the controller to negate 
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INTA# by writing any value (1 or 0) to the PCI_INT bit (bit 0) of the add-on board inter-
rupt register. 

6.8

PCI Retry Counter
The PCI retry counter is a read-only word at offset 0x70. It has only one status field:

Bits 4:0 RTRYCNT Retry Count. The number of PCI bus transactions 
that the controller has retried. The maximum value 
for retries is set in the retry value register (Section 
6.6.7.1 on page 43). 

Bits 31:5 Reserved Hardwired to 0

6.9

PCI Arbiter
The controller has a PCI bus arbiter that arbitrates access by the controller and four 
other PCI bus masters. Four request/grant signal pairs are provides for the other mas-
ters; the controller has a fifth, internal request/grant function for its own requests. The 
arbiter implements three priority schemes, which are programmable in the PCI arbiter 
priority control register (PAPC), described in Section 6.6.7.2 on page 44. 

6.10

PCI Enable Register
The PCI enable register is accessed at base-address offset 0x74h, as shown in Table 
5. It is used to enable the PCI arbitrator, enable the add-on board mode, specify the 
completion of controller configuration, and setting and clearing interrupts. The register 
contents are initialized to 0 at reset.

Bit 0 ARB_ENABLE Enable Arbitrator. Enables the built-in PCI arbiter.

Bit 1 ADD_ON_BOARD Enable add-on board Mode. In this mode, the 
VRC4373 controller is located on a PCI add-on board, 
rather than on the mother board. 

Bit 2 CONFIG_DONE PCI Configuration Done. Software should set this to 
1 after configuring the controller’s other PCI regis-
ters. When set to 1, the controller responds normally 
to PCI operations. When cleared to 0, the controller 
responds to PCI target cycles with retry.

Bit 3 SET_PCI_INT Assert PCI Interrupt. Used only in add-on board 
mode. When set to 1 by the CPU, the controller sets 
bit 0 of the add-on board interrupt register ( Section 
6.7.4) to 1 and asserts the PCI interrupt signal 
(INTA#). When the CPU reads SET_PCI_INT, the 
controller returns the value of bit 0 in the add-on 
board interrupt register, which is the state of INTA#l. 
The controller automatically clears SET_PCI_INT to 
0 one clock after software sets it to 1, so there is no 
need for software to clear it. A PCI master causes 
the controller to negate INTA# by writing any value (1 
or 0) to bit 0 of the add-on board interrupt register. 

Bit 4 RST_NMI Negate NMI#. Used only in the add-on board mode. 
When set to 1, the controller negates its NMI# signal. 
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The controller asserts NMI# whenever it detects 
SERR# (PCI system error) asserted. The NMI# ser-
vice routine can read this bit to determine its state, or 
set it to 1, which clears the interrupt. The controller 
automatically clears the bit to 0 one clock after soft-
ware sets it to 1. 

Bit 5 - 31 Reserved Hardwired to 0

6.11

PCI Mailbox 
Registers

The controller has two PCI mailbox registers for passing messages between the CPU 
and PCI bus masters:

• PCI mailbox register 1
• PCI mailbox register 2

Both registers are 1-word wide and may be read and written by either the CPU or a PCI 
bus master. From the CPU side, the addresses of the PCI mailbox registers are at off-
sets 30 and 34, respectively (see Table 5). From the PCI bus side, the addresses are 
software configurable, as described in Section 6.5 and Section 6.6. The PCI mailbox 
registers are mapped into PCI memory space and respond only to PCI memory cycles.

Both PCI mailbox registers are cleared to 0 at reset. The registers respond as soon as 
the memory space enable (MEMEN) bit is set in the PCI command register (Section 
6.6.2); there is no enable function specific to these registers. If the mailbox base 
address register (offset 0x110 in Table 25) is not initialized before the MEMEN bit (bit 
1) is set in the command register (offset 0x104 in Table 25), the base addresses for the 
two PCI mailbox registers will be mapped to offsets 0x0 and 0x800, respectively, and 
may collide with other PCI devices.

When a PCI mailbox register is accessed from the PCI bus (either read or write), it 
causes a mailbox interrupt bit (MB1 or MB2) to be set in the controller’s interrupt con-
trol and status register (Section 8.1.2 on page 57). The interrupt is automatically 
cleared when the CPU reads or writes the corresponding PCI mailbox register.

6.12

Exclusive Access to 
PCI bus Resources

As shown in Table 25 and Table 26, the controller provides a mechanism for obtaining 
exclusive (locked) access to PCI targets, as defined in the PCI Local Bus Specification, 
Section 3.6. As a master on the PCI bus, the controller can lock a specific target on the 
PCI bus, using the LOCK# signal.

To request exclusive access to a target, software sets bit 0 of the PCI exclusive access 
register (described immediately below) to 1. When this bit is set, the next PCI access 
uses the exclusive protocol, if possible, allowing the addressed resource to become 
locked to the requester, via the controller. To release the target, software clears bit 0 
prior to the last exclusive access; the current access remains exclusive until com-
pleted, at which time the target resource is released. 

When the PCI bus target is locked, transactions are allowed only between the control-
ler and the locked target. Transactions that do not complete are retried until they suc-
cessfully complete. If the retry limit set in the retry value register (Section 6.6.7.1 on 
page 43) is reached, the controller sets bit 2 of the PCI exclusive access register to 1. 
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If the controller receives an abort during a locked transaction, it sets bit 3 of the PCI 
exclusive access register to 1.

The controller can also perform exclusive accesses as a target. To configure this, soft-
ware sets bit 1 of the PCI exclusive access register. When the controller senses that it 
is the target of a locked PCI bus cycle, it enters the locked mode. While in the locked 
mode, no other accesses to the controller, either from the PCI bus or from the CPU 
bus, are allowed until the master negates both FRAME# and LOCK#. However, refresh 
cycles are permitted to the DRAM system even while the memory is locked. 

6.12.1

PCI Exclusive Access 
Register

The exclusive access register stores a read/write word at offset 0x60. It has the follow-
ing fields:

Bit 0 EAREQ Exclusive Access Request
1 = Exclusive access request. In response, the con-
troller asserts LOCK#, if conditions on the PCI bus 
permit (see Section 3.6 of the PCI Local Bus Specifi-
cation for details). 
0 = Release target; the controller negates LOCK# 
after completing the current access. 

Bit 1 UNLOCK Controller Is Not a Locked Target:
1 = Disable controller as target of exclusive access.
0 = Enable controller as target of exclusive access.

Bit 2 RTRYREACHED Retry Limit Reached
1 = Retry limit has been reached. The limit is set in 
the retry value register (Section 6.6.7.1 on page 43), 
and the retry count can be read in the PCI retry 
counter register (Section 6.8 on page 47).
0 = Retry limit has not been reached. 

Bit 3 ABORT Abort Received. 
1 = Either a master-abort or target-abort has been 
received while the controller was asserting LOCK#. 
These aborts are described in Figures 3-4 and 3-10 
of the PCI Local Bus Specification.
0 = No abort has been received. 

Bits 31:4 Reserved Hardwired to 0
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7.0 DMA Transfers
The controller supports CPU-initiated DMA transfers between memory and the PCI 
bus. These transfers can be unaligned reads or writes at the full PCI rate of 133 MB/s. 
Two sets of CPU-programmed registers configure DMA transfers; one set of registers 
can be read or written while the other set is controlling a transfer. An 8-word (32-byte) 
bidirectional FIFO, called the DMA FIFO, temporarily stores PCI-to-memory or mem-
ory-to-PCI transfers inside the controller.

To initiate a DMA transfer, the CPU configures the controller’s DMA registers (Section 
7.3) with the memory address, PCI bus address, read-write transfer direction, bound-
ary crossing points, end-of-transfer interrupt enable, and transfer enable. Once config-
ured, the controller arbitrates for the memory and PCI bus and performs the transfer 
independently of the CPU. 

PCI bus masters cannot initiate DMA transfers. Instead, such masters gain access to 
the controller’s memory through PCI target address windows, described in Section 6.4. 

7.1

Types of DMA 
Operations

DMA transfers can be from the PCI bus to memory (called a PCI read), or from memory 
to the PCI bus (called a PCI write). The direction is set in the R/W bit (bit 29) of the 
DMA control registers.

7.1.1

PCI-to-Memory 
Transfers (PCI Read)

For a PCI bus read (from the PCI bus to memory), the controller begins by requesting 
access to the PCI bus. When granted, the controller reads words from the PCI bus and 
stores them in its 8-word DMA FIFO. When the FIFO contains 4 words (half-full), the 
controller requests access to memory, which is granted as soon as any current CPU 
memory operation completes. Then, the controller begins emptying data from the FIFO 
to memory at the fastest rate supported by memory. 

If the controller’s DMA FIFO becomes full during a transfer, the controller releases the 
resource responsible for filling the FIFO until the FIFO is emptied to 4 words (half-
empty). Then the controller reacquires the resource and continues filling the FIFO.

7.1.2

Memory-to-PCI 
Transfers (PCI Write)

For a PCI bus write (from memory to the PCI bus), the controller begins by requesting 
access to memory. When granted, the controller reads the first 8 words into its DMA 
FIFO at the fastest rate supported by memory. 

If the addressed memory is in the base memory range and is bank interleaved, the 
controller requests access to the PCI bus after receiving 1 word from memory into its 
DMA FIFO. For any other memory configuration, the controller accumulates 4 words in 
its FIFO before requesting the PCI bus. The controller attempt to empty the FIFO as 
quickly as the PCI target can accept the data. Meanwhile, the controller attempts to 
keep its FIFO full. If the FIFO becomes full, the controller releases memory until the 
FIFO reaches half full (4 words), at which time it again accesses memory and begins 
filling the FIFO. 

If the FIFO becomes empty, the controller issues a disconnect command to the PCI 
bus. If there is more data to transferred in the same DMA operation, the controller con-
tinues filling its FIFO from memory and accesses the PCI bus when either 1 word or 4 
words have been accumulated in the FIFO, depending on the memory type as 
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described above. When the correct number of words has been read from memory, the 
controller stops filling its FIFO but continues emptying the FIFO until the last transfer 
completes. 

7.1.3

Transfer Completion
When a DMA transfer completes, the controller interrupts the CPU (if INT# interrupts 
are enabled), with bit 1 or 2 set in the controller’s interrupt control and status register 
(Section 8.1.2). The controller then checks the other set of DMA control registers to 
determine if another DMA transfer is pending. If another is pending, the controller 
allows a one pending CPU-to-memory and one pending CPU-to-PCI transaction to 
complete before beginning the next DMA transfer.

If the controller receives a PCI master-abort or target-abort termination, the controller 
resets the DMA channel, indicates the error type by setting bits 1:0 of the bus error sta-
tus register (Section 8.1.1), and interrupts the CPU (if Int# interrupts are enabled). If a 
DMA bus error occurs, the controller interrupts the CPU (if Int# interrupts are enabled), 
with bit 5 set in the interrupt control and status register (Section 8.1.2). If the other DMA 
channel is enabled to begin a transfer (bit 28 set in the other DMA control register), the 
controller begins the pending transfer. 

7.2

CPU Access During 
DMA Transfers

After a DMA transfer starts, the CPU cannot access memory until the DMA reaches a 
boundary crossing point in the memory address space. The boundary crossing point is 
programmed by the CPU, in increments of 8-words, in the DMA control registers. The 
controller allows the CPU to perform one memory transaction at each boundary cross-
ing point. Thus, a CPU memory-read stalls between boundary crossing points, but a 
CPU memory write will be buffered in the CPU-to-memory write FIFO. When the write 
FIFO contains a posted write, all other CPU-to-memory transactions stall (EOK# 
negated) until a boundary crossing point is reached or the DMA transaction completes.

If the CPU attempts to read an address mapped to the PCI bus during a DMA transfer, 
the CPU read stalls until the DMA transfer completes. If the CPU attempts to write to an 
address mapped to the PCI bus address during a DMA transfer, the CPU write is 
posted in the PCI master FIFO until the DMA transfer completes. When the PCI master 
FIFO contains a posted write, all other CPU transactions stall (EOK# de-asserted) until 
the FIFO is emptied. 

7.3

DMA Registers
The controller has two sets of DMA configuration registers, each of which controls a 
DMA transfer. One set of registers may be read or written while the other set is control-
ling a DMA transfer. The configuration registers are:

• DMA control registers 1 and 2
• DMA memory address registers 1 and 2
• DMA PCI address registers 1 and 2

In addition to these configuration registers, the controller also has the following DMA 
status registers: 

• DMA words remaining egister
• DMA current memory address register
• DMA current PCI address register
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The registers at located at offsets 0x38 through 0x4C, and offsets 0x64 through 0x6C, 
as shown in Table 5 on page 6. The following sections describe the contents of these 
registers. 

7.3.1

DMA Control 
Registers 1 and 2

These two registers are used by the CPU to configure DMA transfers. One register can 
be read or written while the other is controlling a DMA transfer. When a DMA transfer 
has started, changing bits in the DMA control registers, except the DRST and SU bits 
(bits 24 and 27), have no effect.

The registers are 4 bytes wide, at offsets 0x38 and 0x44. They are initialized to 0 at 
reset and contain the following fields:

Bits 19:0 BlkSize Block Size. The number of bytes (up to 1 MB) to be 
transferred. 0 = 1 MB.

Bits 23:20 BoundPnt Boundary Crossing Point. The address boundary, in 
8-word (32-byte) increments, at which CPU memory 
transactions may be performed during a DMA trans-
action. When the current DMA memory address 
matches a boundary, as defined in this field, the con-
troller allows the CPU to perform one memory trans-
action. Boundaries are defined in table below. 

Bit 24 DRST DMA Reset
1 = Terminates an in-progress DMA transfer and 
resets the DMA logic, after completion of the current 
bus cycle. This bit take precedence over all other bits 
in the DMA command register. The value written to 
the other bits of this register when DRST is 1 is irrel-
evant: this bit takes precedence.
0 = The controller clears this bit automatically after 
the DMA channel has been reset. 

BoundPnt Field Byte Address Boundary

0000 None

0001 32

0010 64

0011 128

0100 256

0101 512

0110 1K

0111 2K

1000 4K

1001 8K

1010 16K

1011 32K

1100 64K

1101 128K

1110 256K

1111 512K
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Bit 25 MIO PCI Memory or I/O
1 = Transaction to or from PCI memory space
0 = Transaction to or from PCI I/O space

Bit 26 INC Increment PCI Address
1 = PCI address incremented as the DMA transfer is 
performed. 
0 = Restart from original starting address for any 
condition that causes the DMA to restart a PCI burst. 
The starting address is programmed in the DMA 
memory address register or the DMA PCI address 
register.

Bit 27 SU Suspend DMA
1 = Suspend the current DMA transfer after comple-
tion of the current PCI cycle. All register values are 
preserved. 
0 = Restart the suspended DMA transfer. This bit 
may be set and cleared without consideration of the 
other bits in the DMA control registers, except DRST 
(bit 24) That is, when the DMA transfer has started, 
changing bits other than SU and DRST has no effect.

Bit 28 GO Begin Transfer
1 = Start the DMA transfer as soon as the PCI and 
memory buses are available. 
0 = The controller automatically clears this bit after 
the transfer completes. Software-clearing this bit has 
no effect; the DMA transfer will continue. This bit 
must not be set if the bus master enable bit (bit 2) in 
the PCI command register (Section 6.6.2.1) has not 
been previously set. 

Bit 29 R/W PCI Read/Write Direction
1 = Read data from the PCI bus and write it to local 
memory. 
0 = Read data from local memory and write it to PCI 
bus.

Bit 30 IE Interrupt Enable
1 = When the DMA transfer completes, the controller 
interrupts the CPU (if Int# interrupts are enabled), 
with bit 1 or 2 set in the controller’s interrupt vontrol 
and status register (see Section 8.1.2).
0 = The controller does not interrupt the CPU on 
completion of the DMA transfer. 

Bit 31 BZ Busy (read only) 
1 = The DMA transfer controlled by this register is 
currently in process. This bit may be polled. 
0 = No DMA transfer controlled by this register is in 
process. 
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7.3.2

DMA Memory 
Address Registers 1 
and 2

These registers are programmed by the CPU with the starting memory address for the 
transfer. The registers are at offsets 0x3C and 0x48. They are initialized to 0x0 at reset 
and contains the following fields: 

Bits 31:0 Local Address Memory Starting Address. The starting address to be 
used when accessing the controller’s memory. This 
field remains static throughout the DMA transfer. The 
current memory address being accessed can be 
read from the DMA current memory address register 
(Section 7.3.5).

7.3.3

DMA PCI Address 
Registers 1 and 2

These registers are programmed by the CPU with the starting PCI bus address for the 
transfer. The registers are at offsets 0x40 and 0x4C. They are initialized to 0x0 at reset 
and contains the following fields: 

Bits 31:0 LocalAddr PCI bus Starting Address. The starting address to be 
used when accessing the PCI bus. This field remains 
static throughout the DMA transfer. The current PCI 
bus address being accessed can be read from the 
DMA current PCI address register (Section 7.3.6).

7.3.4

DMA Words 
Remaining Register

This register can be read by the CPU to determine the number of words remaining in 
the current DMA transfer. The register is at offset 0x64. It is initialized to 0x0 at reset 
and contains the following fields: 

Bits 31:0 WordCnt Words Remaining (read-only)
The number of words remaining to be transferred in 
the current DMA operation. 

7.3.5

DMA Current Memory 
Address Register

This register can be read by the CPU to determine the memory address currently being 
accessed in a DMA transfer. The register is at offset 0x68. It is initialized to 0x0 at reset 
and contains the following fields: 

Bits 31:0 CrntAddr Current Memory Address (read-only)
The current memory address of the DMA operation. 

7.3.6

DMA Current PCI 
Address Register

This register can be read by the CPU to determine the PCI address currently being 
accessed in a DMA transfer. The register is at offset 0x6C. It is initialized to 0x0 at reset 
and contains the following fields: 

Bits 31:0 CrntAddr Current PCI Address (read-only)
The current PCI address of the DMA operation. 

7.4

Data Aligner
The controller automatically handles unaligned bidirectional transfers between the PCI 
bus and memory. The aligner permits the controller to use high-speed burst protocols 
for transfers, even when both the source and destination addresses are not aligned on 
word-address boundaries or with each other. 
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The align function is performed between the DMA FIFO and memory, or vice versa. 
The aligner shifts byte data into the DMA FIFO or memory, in the alignment required 
by, or supplied by the PCI bus. Figure 6 shows the operation of the aligner for a DMA 
transfer from byte address 0002 in memory to byte address 0003 on the PCI bus (or in 
the opposite direction). 

Figure 6:   DMA Transfer Alignment Example 

Byte 3 Byte 2 Byte 1 Byte 0

2 1

6 5 4 3

10 9 8 7

11

Byte 3 Byte 2 Byte 1 Byte 0

1

5 4 3 2

9 8 7 6

11 10

Byte 3 Byte 2 Byte 1 Byte 0

1

5 4 3 2

9 8 7 6

11 10

Memory

DMA FIFO

PCI Bus

Data Aligner



56

8.0 Interrupts
The controller supports maskable interrupts using the Int# input to the CPU, and non-
maskable interrupts using the NMI# input to the CPU.

8.1

Maskable Interrupts 
(Int#)

The controller can be enabled to interrupt the CPU when the following types of memory 
or PCI bus errors occur:

q Illegal Address Errors: Memory accesses by the CPU to physical addresses 
outside of one of the five memory ranges, one of the three PCI windows, or one of 
the controller’s internal registers. 

q Target Abort, Master Abort, and Retry Limit Errors: PCI bus accesses by the CPU 
that result in target abort, master abort, or more retries than specified by retry 
value register. 

The controller reports errors to the CPU by asserting the INT# signal, if enabled by bit 
0 in the interrupt control and status register (Section 8.1.2). The CPU’s interrupt ser-
vice routine can then read the bus error status register (Section 8.1.1) to determine the 
type of error. The Int# signal is a level-sensitive output to the CPU and may not be 
shared with other interrupt generators. The controller does not prioritize the various 
interrupt sources. 

During CPU reads, any of the detected errors cause the controller to return the correct 
number of data words, but with the bus error bit set in SysCmd[0] for those words that 
are returned after the word that caused the bus error. 

For DMA accesses to controller memory that miss the configured memory ranges, the 
bus error status register contain the error information, just as for errors during CPU 
accesses. DMA accesses to the PCI bus that result in target abort, master abort, or 
more retries than specified, set only the error type field in the bus error status register 
but not the error address field. Bus errors generated by the DMA cause the DBE inter-
rupt to be generated, if enabled.

External PCI accesses that hit either target window, but miss all internal controller 
resources will set the ET code to 0 and the error address. The error address will be the 
translated address. External PCI accesses can never set an ET code other than 00. 
This bus error sets the PBE interrupt, if enabled.

8.1.1

Bus Error Status 
Register

This read-only register should be read by the CPU, when the CPU detects a bus error 
interrupt from the controller. It contains the cause of the error. The contents remain 
constant after the error, until read by the CPU. The register is at offset 0x50. It is initial-
ized to 0x0 at reset and contains the following fields: 

Bits 1:0 ET Error Type
00 = Illegal address
01 = Target abort received
10 = Master abort signaled 
11 = Retry limit reached. The value specified in the 
retry value register (Section 6.6.7.1) has been 
reached. 
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Bits 31:2 EA Error Address. The most significant 30 bits of the 
local (controller side) physical address that caused 
the error. This field is valid for CPU and DMA 
accesses to the controller’s memory. It is not valid for 
DMA accesses to the PCI bus memory space. 

8.1.2

Interrupt Control and 
Status Register

The interrupt control and status register is read-only in its lower byte, read-write in its 
middle two bytes, and write-only in the high byte. The low byte should be read by the 
CPU, along with the bus error status register, when the CPU detects an Int# interrupt 
from the controller. The contents of the interrupt control and status register remain con-
stant after the error, until read by the CPU. 

The register is at offset 0x50. It is initialized to 0 at reset and contains the following 
fields: 

Bit 0 CBE CPU Bus Error (read only)
1 = CPU bus error
0 = No such error

Bit 1 DMA1 DMA Channel 1 Complete (read only)
1 = Transfer specified in DMA control register 1 is 
complete
0 = Transfer 1 is not complete

Bit 2 DMA2 DMA Channel 2 Complete (read only)
1 = Transfer specified in DMA control register 2 is 
complete
0 = Transfer 2 is not complete

Bit 3 MB1 PCI Mailbox 1 Accessed (read only)
1 = Mailbox 1 accessed from the PCI bus 
0 = Mailbox 1 not accessed 

Bit 4 MB2 PCI Mailbox 2 Accessed (read only)
1 = Mailbox 2 accessed from the PCI bus 
0 = Mailbox 2 not accessed

Bit 5 DBE DMA Bus Error (read only)
1 = A bus error occurred during a DMA transfer
0 = No such error 

Bit 6 PBE PCI Bus Error (read only)
1 = A bus error occurred during a PCI target access 
0 = No such error

Bit 7 PAR PCI Parity Error (read only) 
1 = Parity error. The error can be on (a) address par-
ity during a target cycle, (b) data parity during a tar-
get write cycle, or (c) data parity during a master 
read cycle.
0 = No such error
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Bit 8 CBEmsk CPU Bus Error Enable (read/write) 
1 = Enable CPU bus error interrupts
0 = Disable such interrupts

Bit 9 DMA1msk DMA Channel 1 Complete Enable (read/write)
1 = Enable DMA channel 1 complete interrupts
0 = Disable such interrupts

Bit 10 DMA2msk DMA Channel 2 Complete Enable (read/write)
1 = Enable DMA channel 2 complete interrupts
0 = Disable such interrupts

Bit 11 MB1msk PCI Mailbox 1 Accessed Enable (read/write)
1 = Enable PCI mailbox 1 accessed interrupts
0 = Disable such interrupts

Bit 12 MB2msk PCI Mailbox 2 Accessed Enable (read/write)
1 = Enable PCI mailbox 2 accessed interrupts
0 = Disable such interrupts

Bit 13 DBEmsk DMA Bus Error Enable (read/write)
1 = Enable DMA bus error interrupts
0 = Disable such interrupts

Bit 14 PBEmsk PCI Bus Error Enable (read/write)
1 = Enable PCI bus error interrupts
0 = Disable such interrupts

Bit 15 PARmsk PCI Parity Error Enable (read/write)
1 = Enable PCI parity error interrupts.
0 = Disable such interrupts

Bits 23:16 Reserved Hardwired to 0

Bits 24 CBEclr CPU Bus Error Clear (write-only)
1 = Clear the CPU bus error interrupt (always returns 
0 when read)

Bits 25 DMA1clr DMA Channel 1 Complete Clear (write-only)
1 = Clear the DMA channel 1 complete interrupt 
Always returns 0 when read

Bits 26 DMA2clr DMA Channel 2 Complete Clear (write-only)
1 = Clear the DMA channel 2 complete interrupt 
Always returns 0 when read

Bits 27 MB1clr PCI Mailbox 1 Accessed Clear (write-only)
1 = Clear the PCI mailbox 1 accessed interrupt 
Always returns 0 when read

Bits 28 MB2clr PCI Mailbox 2 Accessed Clear (write-only)
1 = Clear the PCI mailbox 2 accessed interrupt 
Always returns 0 when read

Bits 29 DBEclr DMA Bus Error Clear (write-only)
1 = Clear the DMA bus error interrupt (always returns 
0 when read)
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Bits 30 PBEclr PCI Bus Error Clear (write-only)
1 = Clear the PCI bus error interrupt (always returns 
0 when read)

Bit 31 PARclr PCI Parity Error Clear (write-only)
1 = Clear the PCI parity error interrupt (allways 
returns 0 when read)

8.2

Non-Maskable 
Interrupts (NMI#)

The controller asserts NMI# only when a PCI device asserts SERR#. 
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9.0 Clocking
The controller receives a 66 MHz oscillator reference clock (REFCLK) and distributes 
the 66 MHz MasterClock to the CPU. The controller also generates and distributes four 
copies of the 33 MHz PCI clock (CLK[3:0]). Figure 7 shows the controller’s clock con-
nections with the system.

Figure 7:   Clock Connections 
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10.0 Reset Configuration Signals
The rising edge of PCI bus reset (RST#) serves as the controller’s reset. Table 27 lists 
the configuration signals that the controller samples for one REFCLK edge while RST# 
is active. 

Table 27: Reset Configuration Signals

MuxAd signals Function Description

MuxAd[2:0] Boot ROM size Table 13 on page 16

MuxAd[6:3] Boot ROM write protect Section 5.5.1.1 on page 16

MuxAd[7] Test enable
1 = enable
0 = disable

Section 13.0 on page 97

MuxAd[8] Flash boot enable
1 = enable
0 = disable

Section 5.5.2.2 on page 17

MuxAd[10] Endian byte order
1 = big endian
0 = little endian

Section 4.1 on page 8
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11.0 Endian Mode Software Issues

11.1

Overview
The native endian mode for MIPS processors, like Motorola and IBM 370 processors, 
is big endian. However, the native mode for Intel (which developed the PCI standard) 
and VAX processors is little endian. For PCI-compatibility reasons, most PCI periph-
eral chips, including the VRC4373 controller, operate natively in little-endian mode. 

While the VRC4373 controller is natively little-endian, it supports either big- or little-
endian mode on the CPU interface. The state of the MuxAd[11] signal at reset deter-
mines this endian mode (Section 10.0). However, there are important considerations 
when using the controller in a mixed-endian design. The most important aspect of the 
endian issue is which byte lanes of the SysAD bus are activated for a particular 
address. 

If the big-endian mode is implemented for the CPU interface, the controller swaps 
bytes within words and halfwords that are coming in and going out on the SysAD bus. 
All of the controller’s other interfaces operate in little-endian mode. There are a number 
of implications associated with this:

• Data in memory is always ordered in little-endian mode, even with a big-endian 
CPU interface. 

• Little-endian bit-fields and other data structures that span two or more bytes (such 
as bit-fields within registers or FIFOs) are fragmented when the CPU interface is 
big-endian. The contents of these data structures are byte-swizzled, so that the 
bits are arranged [7:0], [15:8], [23:16], [31:24], rather than [31:0]. 

• Big-endian devices on the PCI bus must be byte-swapped external to the 
controller.

The sections below view the endian issue from a programmer’s perspective. They 
describe how to implement mixed-endian designs and how to make code endian-inde-
pendent. 

11.2

Endian Modes
The endian mode of a device refers to its word-addressing method and byte order: 

• Big-endian devices address data items at the big end (most significant bit number). 
The most-significant byte (MSB) in an addressed data item is at the lowest 
address. 

• Little-endian devices address data items at the little end (least significant bit 
number). The most significant byte (MSB) in an addressed data item is at the 
highest address. 

Figure 8 shows the bit and byte order of the two endian modes, as it applies to bytes 
within word-sized data items. The bit order within bytes is the same for both modes. 
The big (most-significant) bit is on the left side, and the little (least significant) bit is on 
the right side. Only the bit order of sub-items is reversed within a larger addressable 
data item (halfword, word, doubleword, quadword) when crossing between the two 
endian modes. The sub-items’ order of significance within the larger data item remains 
the same. For example, the least significant half word (LSHW) in a word is always to 
the right and the most-significant halfword (MSHW) is to the left. 



63

Figure 8:   Bit and Byte Order of Endian Modes
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Figure 9:   Halfword Data-Array Example 
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Figure 10:   Word Data-Array Example 
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11.3.3

Byte or Halfword 
Accesses Into I/O 
Registers

Word accesses can cause some inconvenience (for example, shadow registers) when 
modifying only one or two fields within a 32-bit PCI register. In this case, byte or half-
word access to the 32-bit register may be simpler. This type of transfer is analogous to 
the halfword access into a data array consisting of word data types, shown in Figure 
10. Such accesses are mismatched to the defined data type and must be cross-
addressed to get the byte or halfword of interest. The AM79C791 LAN controller does 
not provide big-endian hardware support to deal with byte or half-word transfers into 
the I/O registers. Code written to perform byte or half-word accesses into the 32-bit I/
O registers will not be endian-independent.

The I/O register field addresses documented in the AM79C971 Technical Manual are 
based on a register model derived from a little-endian perspective. The number order 
of these addresses progresses from right (least significant) to left. However, a big-
endian system will respond to all addresses as if the number order progresses from left 
(most significant) to right. To access the desired byte or half word, the address order 
documented in the technical manual must be reversed.

The fields of the PCI status register and PCI command register are two examples of 
frequently used I/O register fields. The address offsets documented in the technical 
manual are 0x06 and 0x04, respectively. The PCI command register field is located in 
the less-significant halfword of the 32-bit I/O register that is also located at offset 0x04. 
The PCI Command Register field shares the same offset with its 32-bit register 
because of the little-endian number order. In a big-endian system, the more-significant 
halfword (i.e. PCI Status Register field) would share the same offset value with its 32-
bit register. So, if the offset 0x04 is used to access the PCI Command Register field, a 
big-endian system would actually access the PCI Status Register field. To access the 
proper halfword, the offsets must be exchanged between the two 16-bit register fields. 
In other words there must be a reversal (or swapping) of number order, relative to the 
information documented in the Technical Manual.

These special addressing considerations are completely independent of the operand 
pointers associated with the CPU register used as source or destination. The source or 
destination within the CPU’s register file can be at any location, size, or alignment with-
out altering the transfer results. A common error is to byte-swap CPU register data 
when transferring a halfword to or from a 32-bit register. The order of significance is the 
same for both endian modes, so no byte-swap is needed. This is purely an addressing 
problem. 

Table 28 and Table 29 show how the offsets in the AM79C971 Technical Manual are 
swapped with the other offsets to produce the proper cross-addressed offset required 
by big-endian systems. The determining factors for the swap are the values of the two 
least significant bits of the offsets. According to the AM79C971 Technical Manual, the 
PCI Command Register field has the offset 0x04. Table 29 shows that the offset 0x06 
is needed to access the PCI Command Register field. The two least significant bits of 
0x04 are b00, which convert to b10 to give the result of 0x06h.
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11.4

GUI Controller 
Example

The Cirrus Logic CL-GD5465 GUI controller is another example of a PCI bus device 
that offers some mixed-endian support. The designers of this GUI controller assumed 
three data types: 32-bit word, 16-bit half word, and 8-bit byte. Unlike the LAN controller 
which could make certain assumptions as to data type (for I/O register or DMA FIFO 
accesses), the GUI hardware cannot determine what data type will be used during any 
particular data transfer; any data type might be involved in any I/O register or RDRAM 
access. 

The data type must be known for a given bus transfer so that the appropriate byte or 
halfword swap can be performed. The data types may change from bus cycle to the 
next; one software task may be operating in parallel with and independently of another 
software task. One of the easiest methods to accommodate such an environment, 
without semaphores and such, is to provide address apertures into the memory space.

The aperture scheme calls for GUI hardware resources to be mirrored into three 
address ranges. Depending on which address range is selected, a specific data type 
and data swap is used. Chapter 13 of the CL-GD5465 Technical Manual gives details 
of these three apertures.

11.4.1

Word Accesses Into 
the I/O Registers

The GUI controller’s internal 32-bit I/O registers can be accessed with 32-bit word 
transfers. In this case, the access type and data type match; no swapping of bytes or 
halfwords is required because the order of significance is the same for both endian 
modes. With such word transfers, the I/O register model is endian-independent, so the 
first address aperture described in the CL-GD5465 Technical Manual is used.

Word accesses have the advantage that the register address values documented in 
the technical manual can be used without change (although offsets for individual reg-
ister fields such as the PC latency timer must be ignored). The position of individual 
register fields as well as byte position within these fields also remains the same as 
shown in the technical manual.

Table 28: Cross-Addressing for Byte Accesses Into a 32-bit I/O Register

Least Significant Bits of Offset 
From AM79C971 Technical Manual

Least Significant Bits of Offset 
Required by Big-Endian System

b0 0 b1 1

b0 1 b1 0

b1 0 b0 1

b1 1 b0 0

Table 29: Cross-Addressing for Half-Word Accesses into a 32-bit I/O Register

Least Significant Bits of Offset 
From AM79C971 Technical Manual

Least Significant Bits of Offset 
Required by Big-Endian System

b0 0 b1 0

b1 0 b0 0
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11.4.2

Byte or Half-Word 
Accesses Into I/O 
Registers

As in the LAN controller example, byte or half-word access may be simpler than word 
accesses when modifying only one or two fields within a 32-bit I/O register. This type of 
transfer is analogous to the half-word access into a data array consisting of word data 
types, shown in Figure 10. Such accesses are mismatched to the defined data type 
and must be swapped to get the byte or half word of interest. Code written to perform 
byte or halfword accesses into the 32-bit word I/O registers will not be endian-indepen-
dent.

There are two methods to perform byte or half-word accesses into the GUI controller. 
The first method is the use of the apertures for half-word swap (second aperture) and 
byte-swap (third aperture). This method has the advantage that the little-endian 
addresses documented in the technical manual are the same as those used by big-
endian code, except for the addition of the offset required to select the appropriate 
aperture. (As of this printing, the second aperture remains unverified and has gener-
ated some confusion resulting from poor documentation or improper implementation.)

The second method of performing byte or halfword accesses is to cross-address the 
transfer. Care must be taken, however, when referencing the CL-GD5465 Technical 
Manual. The I/O register field addresses documented in the technical manual are 
based on a little-endian register model. The number order of these addresses progress 
from right (least significant) to left. However, big-endian systems respond to addresses 
as if the number order progresses from left (most-significant) to right. To access the 
desired byte or half word, the address order documented in the technical manual must 
be reversed.

11.4.3

Accesses Into RDRAM
The CL-GD5465 GUI controller’s internal pixel and video engines constrain the Ram-
bus® DRAM (RDRAM) to be little-endian. Here again, big-endian systems have a few 
problems accessing data subgroups, such as a single-byte access into a 32-bit data 
type. Sub-item accesses are also a factor for RDRAM and the cross-addressing and 
address apertures solutions are the same as those described in Section 11.4.2. Super-
group access are also encountered with RDRAM. This situation is mentioned in Sec-
tion 11.2 and shown in Figure 10. A specific GUI-oriented example of this would be an 
8-bit data type, such as a pixel, which is transferred four at a time to maximize PCI bus 
bandwidth.

There are two methods for dealing with supergroup transfers. First is the address-aper-
ture method, used in the sub-item scenario of Section 11.4.2. The third aperture, byte-
swap, is used to provide the proper data swap for the four 8-bit pixel case. The second 
aperture, half-word swap, is used to transfer such things as two 16-bit pixels simulta-
neously. 

The second aperture method requires that the data order in the CPU register be 
swapped prior to an RDRAM write access, or immediately after an RDRAM read 
access. To continue with the previous four-pixel transfer example, the byte number-
order of the four pixels in the CPU register would be reversed. Now the pixel number-
order increases, starting from the right side of the register (first pixel originally on left, 
now on right). Then, the four pixels are written into the RDRAM with a standard 32-bit 
word transfer (first aperture). The case of two 16-bit pixels requires the two half words 
to be swapped, but not the order of the two bytes inside the half words. This second 
method is probably more time-consuming and is not recommended.
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12.0 Timing Diagrams
This section shows timing diagrams for the controller’s various operations on the mem-
ory and PCI buses. The following notations are used:

A or An Address or sequential address number. Each address is also marked by a
vertical dashed line. 

D or Dn Data or sequential data-item number

SDRAM Synchronous DRAM

12.1

Memory 
Initialization and 
CPU Accesses to 
Local Memory

Figure 12 through Figure 16 show the timing for CPU accesses to the controller’s local 
memory.

q CPU Word Write Cycles to Power-On Memory Initialization Registers (Figure 12) 
(This diagram shows the procedure described in Section 5.10 on page 31)

q CPU Byte Write/Word Read Cycles to/from Flash Boot ROM (Figure 12)

q CPU Word Write/Word Read Cycles to/from EDO Base Memory (Figure 13)

q CPU Word Write/Word Read Cycles to/from SDRAM Base Memory (Figure 14)

q CPU Word Write/Word Read Cycles to/from Fast-Page SIMM Memory (Figure 15)

q CPU Word Write/Word Read Cycles to/from SDRAM SIMM Memory (Figure 16)
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Figure 11:   CPU Word Write Cycles to Power-On Memory Initialization Registers 
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Figure 12:   CPU Byte Write/Word Read Cycles to/from Flash Boot ROM 
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Figure 13:   CPU Word Write/Word Read Cycles to/from EDO Base Memory  
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Figure 14:   CPU Word Write/Word Read Cycles to/from SDRAM Base Memory 
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Figure 15:   CPU Word Write/Word Read Cycles to/from Fast-Page SIMM Memory 
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Figure 16:   CPU Word Write/Word Read Cycles to/from SDRAM SIMM Memory 
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12.2

PCI Bus Accesses
Figure 17 through Figure 36 show the timing for various transactions on the PCI bus by 
the CPU and PCI bus masters.

q CPU Configuration of PCI Space
• CPU Read Cycles from PCI Configuration Space (Figure 17)
• CPU Write and Read Cycles to/from PCI Configuration Space (Figure 18)

q CPU Accesses to PCI Memory
• CPU Byte Write and Read Cycles to/from PCI Memory (Figure 19)
• CPU Halfword Write and Read Cycles to/from PCI Memory (Figure 20)
• CPU Tri-Byte Write and Read Cycles to/from PCI Memory (Figure 21)
• CPU Word Write Cycles to PCI Memory (Figure 22)
• CPU Word Write and Read Cycles to/from PCI Memory (Figure 23)
• CPU Back-to-Back Word Write Cycles to PCI Memory (Figure 24)
• CPU 4-Word Block Write Cycles to PCI Memory (Figure 25)
• CPU Back-to-Back 4-Word Block Write Cycles to PCI Memory (Figure 26)

q CPU Accesses to PCI I/O
• CPU 4-Word Block Write Cycles to PCI I/O (Figure 27)
• CPU Back-to-Back 4-Word Block Write Cycles to PCI I/O (Figure 28)
• CPU Back-to-Back 4-Word Block Read Cycles from PCI I/O (Figure 29)

q Controller as PCI Target
• PCI Master Word Write Cycles to Controller Memory as PCI Target, with Retry 

(Figure 30)
• PCI Master Word Read Cycles from Controller Memory as PCI Target, with 

Retry (Figure 31)
• PCI Master 8-Word Write Cycles to Controller Memory as PCI Target (Figure 

32)
• PCI Master 8-Word Read Cycles from Controller Memory as PCI Target 

(Figure 33)
• PCI Master 16-Word Write Cycles to Controller Memory as PCI Target (Figure 

34)
• PCI Master 16-Word Read Cycles from Controller Memory as PCI Target 

(Figure 35)

q DMA Transfers
• DMA Transfer from Controller Memory to PCI Target (Figure 36)

As in the preceding timing diagrams, the following notations are used:

A or An Address or sequential address number. Each address is also marked by a
vertical dashed line. 

D or Dn Data or sequential data item number
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Figure 17:   CPU Read Cycle from PCI Configuration Space 
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Figure 18:   CPU Write and Read Cycles to/from PCI Configuration Space 
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Figure 19:   CPU Byte Write and Read Cycles to/from PCI Memory 
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Figure 20:   CPU Half-Word Write and Read Cycles to/from PCI Memory



81

Figure 21:   CPU Tri-Byte Write and Read Cycles to/from PCI Memory 
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Figure 22:   CPU Word Write Cycles to PCI Memory 
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Figure 23:   CPU Word Write and Read Cycles to/from PCI Memory 
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Figure 24:   CPU Back-to-Back Word Write Cycles to PCI Memory 
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Figure 25:   CPU 4-Word Block Write Cycles to PCI Memory 
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Figure 26:   CPU Back-to-Back 4-Word Block Write Cycles to PCI Memory 
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Figure 27:   CPU 4-Word Block Write Cycles to PCI I/O 



88

Figure 28:   CPU Back-to-Back 4-Word Block Write Cycles to PCI I/O 
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Figure 29:   CPU Back-to-Back 4-Word Block Read Cycles from PCI I/O 
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Figure 30:   PCI Master Word Write Cycles to Controller Memory as PCI Target, with Retry
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Figure 31:   PCI Master Word Read Cycles from Controller Memory as PCI Target, with Retry 
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Figure 32:   PCI Master 8-Word Write Cycles to Controller Memory as PCI Target 
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Figure 33:   PCI Master 8-Word Read Cycles from Controller Memory as PCI Target 
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Figure 34:   PCI Master 16-Word Write Cycles to Controller Memory as PCI Target 
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Figure 35:   PCI Master 16-Word Read Cycles from Controller Memory as PCI Target 
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Figure 36:   DMA Transfer from Controller Memory to PCI Target 
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13.0 Testing
The controller may be configured at power-on reset to force all signals into a high-
impedance state to facilitate board-level, in-circuit testing. To do this, drive the 
MuxAd[7] signal high during reset. 
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14.0 Electrical Specifications

14.1

Absolute Maximum 
Ratings

 

14.2

Operating 
Conditions

14.3

DC Specifications
 

14.4

AC Specifications

14.4.1

PCI CLK[3:0] Outputs
The PCI CLK[3;0] outputs must meet TTL input levels at the destinations. The following 
figure and table summarize the clock destination requirements, per the “PCI Local Bus 
Specification.” See Section 9.0 for details about clock distribution and routing.

Table 30: Maximum Ratings

Parameter Maximum Rating

Storage temperature -55°C to 125°C

Operating ambient temperature 0°C to 70°C

DC supply voltage with respect to GND -0.5V to 4.6V

DC voltage on input pins with respect to GND -0.5 V to 5.5V

Voltage discharged between any two pins through a 1Kohm from 100 pF 2000V

Maximum power dissipation 1 W

Table 31: Operating Conditions

Symbol Parameter Min. Typical Max. Units

VDD All power pins 3.0 3.3 3.6 V

IDSS Static current consumption 1.0 200 µA

TC Case temperature -40 +85 °C

TI Junction temperature -40 +125 °C

Table 32: DC Specifications for all CMOS-9 PADs

Symbol Parameter Min. Typical Max. Units Notes

VIL Input low voltage 0 0.8 V

VIN Input high voltage 2.0 VDD V

VoL Output low voltage 0.4 V

VOH Output high voltage 2.4 V

II Input leakage current with 
no pull-down resistor

±10 µA VI = VDD or GND (max)

II Input leakage current with 
50K internal pull down

28 79 141 µA VI = VDD

IOS Output short-circuit cur-
rent

-250 mA VIN = VIL to VIN

CIN Input capacitance 10 20 pF

COUT Output capacitance 10 20 pF

CI/O I/O capacitance 10 20 pF
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Figure 37:   PCI CLK Input Waveform at Destinations 

Figure 38:   CLK[3:0] Versus MasterClock Output Skew at Controller Pins 
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14.4.2

PCI Inputs, Outputs, 
and Input/Outputs

The controller can be used in both 3.3- and 5-volt PCI systems. To accommodate both 
voltages, consideration must be given to switching and signaling levels, per the “PCI 
Local Bus Specification.” Table 34 reproduces Table 4-7 of the “PCI Local Bus Speci-
fication,” with substitutions made for VCC minimums and maximum for the controller. 
Timing measurements on the controller PCI pads are taken with respect to a VTEST 
voltage of 1.5 volts. Setup and hold input times are measured from the 1.5-volt level on 
the rising edge of CLK[3:0] to the 1.5-volt level on the signal. Likewise, minimum and 
maximum output valid times are measured from the 1.5-volt level on the rising edge of 
CLK[0] at the controller to the 1.5-volt level on the signal at the controller.
. 

 

Table 33: CLK[3:0] and MasterClock Destination Timing Requirements

Symbol Parameter Min. Max. Units Notes

Tper0 CLK[3;0] period 30 ns

Tmid0 CLK[3;0] mid time 0.4 Tper0 0.6 Tper0 ns

Tph0 CLK[3;0] high time 11 ns

Tpl0 CLK[3;0] low time 11 ns

Tpr0 CLK[3;0] rise time 1 8 ns

Tpf0 CLK[3;0] fall time 1 8 ns

Tjit0 Jitter CLK[n] to CLK[m] at controller 
output signals

0 0 ps Loading on all clocks is exactly identical.

Tskw0 Skew CLK[n] to CLK[m] at destina-
tions

0 1 ns This includes +-200ps of system jitter and 
800ps of system skew.

Tskw1 Skew CLK[3;0] at controller to Mas-
terClock at controller

0 1 CLK[3;0] outputs must always be even or 
ahead of the MasterClock output when both 
are measured at controller signals.

Table 34: Timing Reference Voltages

Symbol
5 V PCI 
Signalling
Requirement

3.3 V PCI Signalling
Requirement

Controller Universal
PCI Timing
Reference ValuesPCI Specification Vcc=3.0 Vcc=3.6

Vth 2.4 V 0.6 Vcc 1.8 V 2.16 V 2.4 V

Vtl 0.4 V 0.2 Vcc 0.6 V 0.72 V 0.4 V

Vtest 1.5 V 0.4 Vcc 1.2 V 1.44 V 1.5 V

Vstep1 N/A 0.285 Vcc .86 V 1.03 V 0.285Vcc

Vstep2 N/A 0.615 Vcc 1.85 V 2.15 V 0.615Vcc

Vmax 2.0 V 0.4 Vcc 1.2 V 1.4 V 2.0 V

Table 35: PCI Signal Timing Design Budget a

Symbol Parameter Min.1 Max.1 Units

Tval CLK[0] to signal valid delay: all but REQ[3:0]# and GNT[3:0]# 3.4b 14.4 ns

Tval(ptp) CLK[0] to signal valid delay: REQ[3:0]# and GNT[3:0]# 3.4b 14.4 ns

Ton Float to active delay 3.4b ns

Toff Active to float delay 31.4 ns

Tsu Input setup to CLK[0]: all but REQ[3:0]# and GNT[3:0]# 6.6 ns

Tsu(ptp1) Input setup to CLK[0]: GNT[3:0]# 6.6 ns

Th Input hold time from CLK[0] 3.4 ns

Trst-off Reset active to output float delay (all output drivers) 43.4 ns



101

a. The PCI timing here is slightly different from the PCI specification because the controller is the source of the PCI clock. A controller 
ASIC meeting this timing budget will be PCI compliant in a system that uses the PCI clocking scheme described in Section 9.0. All tim-
ing is measured with respect to CLK[0] output signal at the controller. 

b. This minimum has been made 1ns too generous to provide 1 ns hold time to all PCI devices. 

14.4.3

CPU Interface
All CPU interface signals are measured at the controller with respect to the 1.5 volt 
level of the rising edge of the MasterClock output signal at the controller. Table 36 
shows the CPU timing budget for the controller’s CPU interface. The controller drives 
the MasterClock output to valid CPU MasterClock input levels, as shown in Figure 39. 
For other CPU interface signals, the controller meets standard TTL input and output 
level requirements.

Figure 39:   MasterClock Input Waveform at CPU 

 

Trst Reset active time after power stable 1 ms

Trst-clk Reset active time after CLK stable 100 us

Ttst Test active to test output state (all output drivers) 43.4 ns

Table 35: PCI Signal Timing Design Budget a (Continued)

Symbol Parameter Min.1 Max.1 Units

Table 36: CPU Interface Signal Timing

Symbol Parameter Min. Max. Units

Tper1 MasterClock period 15 50 ns

Tph1 MasterClock high time 4 ns

Tpl1 MasterClock low time 4 ns

Tpr1 MasterClock rise time 1 3 ns

Tpf1 MasterClock fall time 1 3 ns

Tov0 MasterClock at the controller to output valid at the controller 2.2 10.5 ns

Trst-off Reset active to output float delay (all output drivers) 43.4 ns

Ttst Test enable active to output float delay (all output drivers) 43.4 ns

Tis0 Input setup at the controller to MasterClock at the controller 5.8

Tih0 Input hold at the controller to MasterClock at the controller 1.5
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14.4.4

Memory Interface
Table 37 shows the timing budget for the controller’s memory interface. 
 

Table 37: DRAM Timing Specifications

Parameter Symbol

 70ns Fast
Page-Mode

 60 ns
EDO

28F016XD -
85 Units

MIN MAX MIN MAX MIN MAX

Cycle time tRC(R) 130 110 95 ns

Cycle time tRC(W) 130 110 75 ns

Read-modify-write cycle time tRMW 185 160 ns

Access from RAS tRAC 70 60 85 ns

Access from CAS tCAC 20 15 35 ns

Access from Column tAA 35 30 65 ns

RAS to CAS delay tRCD(R) 20 50 20 45 15 50 ns

RAS to CAS delay tRCD(W) 20 50 20 45 15 15 ns

RAS to COL delay tRAD 15 35 15 30 15 15 ns

RAS precharge tRP 50 40 10 ns

RAS pulse width tRAS(R) 70 60 86 INF.

RAS pulse width tRAS(W) 70 60 65 INF. ns

RAS hold time tRSH(R) 20 15 30 ns

RAS hold time tRSH(W) 20 15 50 ns

CAS pulse width tCAS(R) 20 15 35 INF. ns

CAS pulse width tCAS(W) 20 15 50 INF. ns

CAS hold time tCSH(R) 70 50 85 ns

CAS hold time tCSH(W) 70 50 65 ns

ROW setup time tASR 0 0 0 ns

ROW hold time tRAH 10 10 15 ns

COL setup time tASC 0 0 0 ns

COL hold time tCAH 15 10 20 ns

COL to RAS lead time tRAL 35 30 15 ns

ColAddress Hold from RAS tAR 55 50 35 ns

Read cmd setup time tRCS 0 0 5 ns

Read cmd hold time (RAS) tRRH 10 10 0 ns

Read cmd hold time (CAS) tRCH 0 0 0 ns

WE setup time tWCS 0 0 0 ns

WE hold time tWCH 15 10 15 ns

WE hold time (RAS) tWCR 55 50 30 ns

WE pulse width tWP 15 10 15 ns

WE to RAS lead time tRWL 20 15 50 ns

WE to CAS lead time tCWL 20 15 50 ns

DATA setup time tDS 0 0 0 ns

DATA hold time tDH 15 10 15 ns

DATA hold from RAS tDHR 55 50 30 ns

Output Turn-off tOFF 0 20 0 15 30 ns

RAS to WE delay tRWD 100 90 115 ns

CAS to WE delay tCWD 50 50 65 ns

COL to WE delay tAWD 65 60 100 ns

CAS to RAS precharge tCRP 10 10 10 ns

CAS precharge time tCP 10 10 15 ns

Transition time tT 3 50 3 50 2 4 ns
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Refresh Period tREF 16 16 INF. ms

Precharge to CAS active tRPC 10 10 10 ns

CAS setup time tCSR 10 10 10 ns

CAS hold time tCHR 20 20 10 ns

WE to RAS precharge time tWRO 10 10 ns

WE to RAS hold time tWRH 10 10 10 ns

CAS to low-Z tCLZ 0 0 0 ns

RAS hold ref’d to OE tROH 20 15 35 ns

Access from OE tOEA 20 15 35 ns

OE to data delay time tOED 20 15 30 ns

Output turnoff (OE) tOEZ 0 20 3 15 30 ns

OE command hold time tOEH 20 15 15 ns

Page mode cycle time tPC(R) 45 40 65 ns

Page mode cycle time tPC(W) 45 40 65 ns

Page mode RMW cycle time tPRMW 100 85 ns

Access from CAS precharge tCPA 40 35 70 ns

Page mode RAS width tRASP(R) 70 60 85 INF. ns

Page mode RAS width tRASP(W) 70 60 65 INF. ns

Page mode RAS hold from CAS tRHCP 45 35 ns

Page mode CAS precharge to WE tCPWD 70 60 ns

EDO cycle time tHCP 25 ns

Output hold time from CAS tDOH 3 15 ns

Output hold time from WE tWEZ 3 15 ns

Table 37: DRAM Timing Specifications (Continued)

Parameter Symbol

 70ns Fast
Page-Mode

 60 ns
EDO

28F016XD -
85 Units

MIN MAX MIN MAX MIN MAX
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15.0 Pinout
The controller is packaged in an industry-standard 304-pin PQFP package. Table 38 
shows the pin assignments. Figure 40 on page 106 shows the package diagram. 
 

Table 38: Pin Assignments

Pin Name Pin Name Pin Name Pin Name

1 GND 77 VDD 153 GND 229 VDD

2 GND 78 VDD 154 GND 230 VDD

3 MDa[19] 79 MDb[14] 155 PValid# 231 AD[16]

4 MDa[20] 80 MDb[15] 156 SysAd[31] 232 AD[15]

5 MDa[21] 81 MDb[16] 157 SysAd[30] 233 CBE[2]#

6 MDa[22] 82 MDb[17] 158 EOK# 234 FRAME#

7 MDa[23] 83 MDb[18] 159 SysAd[29] 235 IRDY#

8 MDa[24] 84 MDb[19] 160 GND 236 TRDY#

9 VDD 85 MDb[20] 161 SysAd[28] 237 DEVSEL#

10 GND 86 GND 162 SysAd[27] 238 STOP#

11 GND 87 VDD 163 SysAd[26] 239 GND

12 MDa[25] 88 MDb[21] 164 SysAd[25] 240 PAR

13 MDa[26] 89 MDb[22] 165 GND 241 CBE[1]#

14 MDa[27] 90 MDb[23] 166 SysAd[24] 242 AD[14]

15 MDa[28] 91 MDb[24] 167 SysCmd[0] 243 AD[13]

16 MDa[29] 92 MDb[25] 168 SysCmd[1] 244 AD[12]

17 MDa[30] 93 MDb[26] 169 SysCmd[2] 245 AD[11]

18 MDa[31] 94 MDb[27] 170 EValid# 246 AD[10]

19 VDD 95 GND 171 VDD 247 GND

20 GND 96 GND 172 GND 248 GND

21 MCASa[0]# 97 MDb[28] 173 SysCmd[3] 249 AD[9]

22 MCASa[1]# 98 MDb[29] 174 SysCmd[4] 250 AD[8]

23 MCASa[2]# 99 MDb[30] 175 SysAd[23] 251 AD[7]

24 MCASa[3]# 100 MDb[31] 176 SysAd[22] 252 AD[6]

25 VDD 101 GND 177 SysAd[21] 253 AD[5]

26 GND 102 BOE# 178 SysAd[20] 254 CBE[0]#

27 MuxAd[0] 103 BROMCS# 179 SysAd[19] 255 AD[4]

28 MuxAd[1] 104 BRAS# 180 GND 256 GND

29 MuxAd[2] 105 MRAS[0]# 181 SysAd[18] 257 AD[3]

30 MuxAd[3] 106 VDD 182 SysAd[17] 258 AD[2]

31 VDD 107 GND 183 GND 259 AD[1]

32 GND 108 MRAS[1]# 184 MasterClock 260 AD[0]

33 MuxAd[4] 109 MRAS[2]# 185 RST# 261 REQ[0]#

34 MuxAd[5] 110 MRAS[3]# 186 GND 262 REQ[1]#

35 MuxAd[6] 111 MWE# 187 REFCLK 263 REQ[2]#

36 MuxAd[7] 112 BWE# 188 Int# 264 REQ[3]#

37 VDD 113 VDD 189 VDD 265 VDD

38 VDD 114 VDD 190 VDD 266 VDD

39 GND 115 GND 191 GND 267 GND

40 GND 116 GND 192 GND 268 GND

41 MuxAd[8] 117 SDCS[0] 193 No Connect 269 GNT[0]#

42 MuxAd[9] 118 SDCS[1] 194 MuxAd[12] 270 GNT[1]#
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Note: The VDD and Grounds are required.

43 MuxAd[10] 119 SDRAS# 195 NMI 271 GNT[2]#

44 MuxAd[11] 120 SDCAS# 196 MuxAd[13] 272 GND

45 VDD 121 GND 197 No Connection 273 GNT[3]#

46 GND 122 SDCLK[0] 198 GND 274 LOCK#

47 MCASb[0]# 123 GND 199 No Connection 275 PERR#

48 MCASb[1]# 124 SDCLK[1] 200 GND 276 SERR#

49 MCASb[2]# 125 GND 201 CLK[0] 277 IDSEL

50 MCASb[3]# 126 SDCLK[2] 202 CLK[1] 278 INTA#

51 VDD 127 GND 203 GND 279 GND

52 GND 128 SDCLK[3] 204 CLK[2] 280 MDa[0]

53 SDCKE[0] 129 GND 205 CLK[3] 281 MDa[1]

54 SDCKE[1] 130 SysAd[16] 206 GND 282 MDa[2]

55 SDCKE[2] 131 SysAd[15] 207 AD[31] 283 MDa[3]

56 SDCKE[3] 132 SysAd[14] 208 AD[30] 284 MDa[4]

57 VDD 133 GND 209 VDD 285 GND

58 GND 134 GND 210 GND 286 GND

59 MDb[0] 135 SysAd[13] 211 AD[29] 287 MDa[5]

60 MDb[1] 136 SysAd[12] 212 AD[28] 288 MDa[6]

61 MDb[2] 137 SysAd[11] 213 AD[27] 289 MDa[7]

62 MDb[3] 138 SysAd[10] 214 AD[26] 290 MDa[8]

63 MDb[4] 139 SysAd[9] 215 AD[25] 291 MDa[9]

64 MDb[5] 140 SysAd[8] 216 GND 292 MDa[10]

65 MDb[6] 141 SysAd[7] 217 AD[24] 293 MDa[11]

66 VDD 142 VDD 218 AD[23] 294 VDD

67 GND 143 GND 219 CBE[3]# 295 GND

68 MDb[7] 144 SysAd[6] 220 AD[22] 296 MDa[12]

69 MDb[8] 145 SysAd[5] 221 AD[21] 297 MDa[13]

70 MDb[9] 146 SysAd[4] 222 GND 298 MDa[14]

71 MDb[10] 147 SysAd[3] 223 AD[20] 299 MDa[15]

72 MDb[11] 148 SysAd[2] 224 AD[19] 300 MDa[16]

73 MDb[12] 149 SysAd[1] 225 AD[18] 301 MDa[17]

74 MDb[13] 150 SysAd[0] 226 AD[17] 302 MDa[18]

75 GND 151 VDD 227 GND 303 VDD

76 GND 152 VDD 228 GND 304 VDD

Table 38: Pin Assignments (Continued)

Pin Name Pin Name Pin Name Pin Name
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16.0 Package
Figure 40:   304-Pin QFP
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Some of the information contained in this document may vary from country to country.  Before using any NEC 
product in your application, please contact a representative from the NEC office in your country to obtain a list of 
authorized representatives and distributors who can verify the following:

q Device availability

q Ordering information

q Product release schedule

q Availability of related technical literature

q Development environment specifications (for example, specifications for third-party tools and components, 
host computers, power plugs, AC supply voltages, and so forth)

q Network requirements

In addition, trademarks, export restrictions, and other legal issues may also vary from country to country.
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